[image: image1]
[image: image11.png]TEACH

STUDENT COURSE INSTRUCTOR
Narayan Database Mark

Smith Database Navathe

Smith Operating Systems Ammar

Smith Theory Schulman
Wallace Database Mark

Wallace Operating Systems Ahamad

Wong Database Omiecinski
Zelaya Database Navathe

	BCA Sem: Database Management System:
Data Normalization , SQL, Cursors, Triggers and PL/SQL programming
	

 Discussion of Normalization Algorithms:

Problems:

· The database designer must first specify all the relevant functional dependencies among the database attributes.

· These algorithms are not deterministic in general.

· It is not always possible to find a decomposition into relation schemas that preserves dependencies and allows each relation schema in the decomposition to be in BCNF .

Algorithms for Relational Database Schema Design

[image: image12.png]Table 11.1

Summary of the Algorithms Discussed in Sections 11.1 and 11.2

Algorithm
.1

4a

Input

A decomposition
DofRand aset F

of functional

de

ae;

ae;

ae;

Re

Set of func
pendencies F

Set of func
pendencies F

Set of func
pendencies F

ation sc

pendencies

ional

ional

ional

hema

R with a set of
functional

de

pendencies F

Output

Boolean result: yes
or no for nonaddi-
tive join property

A set of relations
in 3NF

A set of relations
in BCNF

A set of relations
in 3NF

Key K of R

Properties/Purpose
Testing for
nonadditive join
decomposition

Dependency
preservation

Nonadditive join
decomposition

Nonadditive join
and dependency-
preserving
decomposition

To find a key K
(that is a subset
of R)

Remarks

See a simpler test
in Section 11.1.4
for binary
decompositions

No guarantee of
satisfying lossless join
property

No guarantee of
dependency
preservation

May not achieve
BCNE, but achieves
all desirable proper-
ties and 3NF

The entire relation R
is always a default
superkey

(Not for BCA) Inclusion Dependencies :
Definition:

· An inclusion dependency R.X < S.Y between two sets of attributes—X of relation schema R, and Y of relation schema S—specifies the constraint that, at any specific time when r is a relation state of R and s a relation state of S, we must have

(X(r(R)) ((Y(s(S))

Note:

· The ? (subset) relationship does not necessarily have to be a proper subset.

· The sets of attributes on which the inclusion dependency is specified—X of R and Y of S—must have the same number of attributes.

· In addition, the domains for each pair of corresponding attributes should be compatible.

Def of Functional dependency (FD):

A functional dependency, denoted by X->Y, between two sets of attributes X and Y that are subsets of R specifies a constraint on the possible tuples that can form a relation state r of R.

The constraint is that, for any two tuples t1 and t2 in r that have t1[X]=t2[X],we must also have t1[Y]=t2[Y].

Ex: i) SSN->ENAME ii) PNO -> {PNAME, PLOCATION} iii) {SSN, PNUMBER}->HOURS

Def of Partial Functional Dependency:

 A Partial Dependency exists in any FD X → Y exists in a relation R.(X being composite), and if some attribute A belongs to X and the removal of A from X say {X-A}, does not alter the FD where {X-A} → Y still holds. This is Partial Functional dependency.

 Ex : {SSN,PNUMBER} -> ENAME is partial dependency bec SSN->ENAME holds.

Def of Normalization:

The process was proposed by E.F.Codd, takes a relation schema through a series of tests to “certify” whether it satisfies certain Normal form or process of decomposing a relation into sub relation until satisfies certain normal form .

The process, which proceeds in a top-down fashion by evaluating each relation against the conditions for Normal form and decomposing relation as needed.

Data normalization is used for:

 i) Minimizing redundancy

ii) Minimizing the insertion, deletion and update anomalies

PROCEDURE:

* When a relation schema is taken through a series of tests ,i.e., the Normalization process , the relations are decomposed where it has to meet two important properties.

1. Lossless join- i.e. the decomposed tables when joined again should not generate spurious tuples.
Lossless (Non-additive) Join Property of Decomposition:

Definition: Lossless join property: a decomposition D = {R1, R2, ..., Rm} of R has the lossless (nonadditive) join property with respect to the set of dependencies F on R if, for every relation state r of R that satisfies F, the following holds, where * is the natural join of all the relations in D:

* ((R1(r), ..., (Rm(r)) = r

Note: The word loss in lossless refers to loss of information, not to loss of tuples. In fact, for “loss of information” a better term is “addition of spurious information”

1. Dependency preservation- i.e The FD’s represented in some individual relations should be preserved after splitting.
 Dependency Preservation Property of a Decomposition (cont.):

a. Dependency Preservation Property:

i. A decomposition D = {R1, R2, ..., Rm} of R is dependency-preserving with respect to F if the union of the projections of F on each Ri in D is equivalent to F; that is

(((R1(F)) υ . . . υ ((Rm(F)))+ = F+

ii. Decomposition of LOTS to (LOTS1, LOTS2) is dependency preserving.

iii. Decomposition of LOTS1A to (LOTS1AX, LOTS1AY) is not dependency preserving (county-name, lot# ({price, pid} is lost).

First Normal Form:

 Def : Disallows multi-valued attributes, composite attributes in the relation. It states that the Domain of an attribute must include only atomic (simple, indivisible) values and that the Value of any attribute in a tuple must be a single value from domain of that attribute.

Normalization into 1NF:

(a) A relation schema that is not in 1NF.

(b) Example state of relation DEPARTMENT.

(c) 1NF version of same relation with redundancy.

[image: image2.png]DEPARTMENT

DNAME DNUMBER DMGRSSN DLOCATIONS
! ! !
DEPARTMENT
DNAME DNUMBER DMGRSSN DLOCATIONS
Research 5 333445555 {Bellaire, Sugarland, Houston}
Administration 4 987654321 {Stafford}
Headquarters 1 888665555 {Houston}
DEPARTMENT
DNAME DNUMBER DMGRSSN DLOCATION
Research 5 333445555 Bellaire
Research 5 333445555 Sugarland
Research 5 333445555 Houston
Administration 4 987654321 Stafford
Headquarters 1 888665555 Houston

Second Normal Form (2NF):

Def :

Second normal form is based on the concept of full functional dependency, A relation schema R is in 2NF if every nonprime attribute A in R is fully functionally dependent on the primary key of R. Relation schema should be in first normal form.

[image: image3.png]EMP_PROJ

SSN PNUMBER HOURS | ENAME | PNAME PLOCATION
FD1 +
FD2 *
FD3 f ?
2NF NORMALIZATION
EP1 EP2 EP3
SSN PNUMBER HOURS SSN ENAME PNUMBER PNAME PLOCATION

FD1

FD2

FD3

1

}

Third Normal Form (3NF):

Def:

Third normal form based on the concept of Transitive dependency. FD X → Y in a relation schema R is a transitive dependency if there is a set of attributes Z in the relation R which is neither a candidate key nor a sub set of any key of R and both X → Z and Y → Z hold.

Whenever a nontrivial functional dependency X->A holds in R, either

i) X is super key of R

ii) A is a prime attribute of R.

[image: image4.png]EMP_DEPT

ENAME

SSN

BDATE

ADDRESS

DNUMBER

DNAME

DMGRSSN

!

!

}

}

I

3NF NORMALIZATION
ED1 ED2
ENAME | SSN BDATE ADDRESS DNUMBER DNUMBER DNAME DMGRSSN

)

)

A

I

Boyce - Codd Normal Form(BCNF):

 A relation schema R is in BCNF if Whenever a nontrivial functional dependency X >A holds in R, then X is a super key of R. difference between def of BCNF and 3NF is which allows A to be prime attribute of R , is absent from BCNF.

· A relation schema R is in BCNF if,R is in third normal from.

· And whenever a nontrivial functional dependency X → A holds in R, X is a super key of R and A cannot be a prime attribute.

· Strict than 3 NF

A relation TEACH that is in 3NF but not in BCNF

Relation TEACH with the following dependencies:

FD1 : { student , course } -> instructor

FD2: instructor - > course

Note: { student , course } is a candidate key for this relation and that the dependencies is in 3NF but not BCNF. Decomposition of this relation schema into two schemas is not straightforward because it may be decomposed in one of the three possible Paris.

1. {student, instructor} and {student, course}

2. {course, instructor} and {course, student}

3. {instructor, course} and {instructor, student}

 All three decompositions “lose” the functional dependency FD1. The desirable decomposition out of the above three is third one, because it will generate spurious tuples after a join operation.

Fourth Normal form (4NF) or Multivalued dependencies:

· Def :

Multivalued dependency denoted by X —>> Y , A relation schema R is in 4NF with respect to a set of dependencies F (that includes functional dependencies and multivalued dependencies) if, for every nontrivial multivalued dependency X —>> Y in F+, X is a superkey for R.

Note: F+ is the (complete) set of all dependencies (functional or multivalued) that will hold in every relation state r of R that satisfies F. It is also called the closure of F.

Decomposing a relation state of EMP that is not in 4NF:

(a) EMP relation with additional tuples.

(b) Two corresponding 4NF relations EMP_PROJECTS and EMP_DEPENDENTS.

[image: image5.png](b)

EMP

ENAME PNAME DNAME
Smith X John
Smith Y Anna
Smith X Anna
Smith Y John

EMP_PROJECTS

EMP_DEPENDENTS

ENAME PNAME ENAME DNAME
Smith X Smith John
Smith Y Smith Anna

Fifth Normal form (5NF) or Join dependencies or Project-join Normal form:

Definition:

· A join dependency (JD), denoted by JD(R1, R2, ..., Rn), specified on relation schema R, specifies a constraint on the states r of R.

· The constraint states that every legal state r of R should have a non-additive join decomposition into R1, R2, ..., Rn; that is, for every such r we have

((R1(r), (R2(r), ..., (Rn(r)) = r

Note: an MVD is a special case of a JD where n = 2.

· A join dependency JD(R1, R2, ..., Rn), specified on relation schema R, is a trivial JD if one of the relation schemas Ri in JD(R1, R2, ..., Rn) is equal to R.

[image: image6.png]Figure 11.4

Fourth and fifth normal forms.
(a) The EMP relation with two MVDs: Ename —> Pname and Ename —3 Dname.
(b) Decomposing the EMP relation into two 4NF relations EMP_PROJECTS and EMP_DEPENDENTS.

(c) The relation SU

PPLY with no MVDs is in 4NF but not in 5NF if it has the JD(R;, Ry, Ra).
(d) Decomposing the relation SUPPLY into the BNF relations Ry, Ry, Ra.

(c) SUPPLY @ R R,
Sname Part_name Proj_name Sname Part_name Sname Proj_name
Smith Bolt ProjX Smith Bolt Smith ProjX
Smith Nut ProjY Smith Nut Smith ProjY
Adamsky Bolt ProjY Adamsky Bolt Adamsky ProjY
Walton Nut ProjZ Walton Nut Walton Projz
| Adamsky Nail | ProjX Adamsky Nail Adamsky ProjX
Adamsky Bolt ProjX R
Smith Bolt ProjY 3 .
Part name | Proj name
Bolt ProjX
Nut ProjY
Bolt ProjY
Nut ProjZz
Nail ProjX

Q. Define Query ? Explain Features of SQL?

Ans: Query is Non-procedural language in which you must describe exactly how To access and manipulate data , SQL specifies what to do.

SQL ("Structured Query Language") is an ANSI Standard computer language commonly used to access data stored in databases. Stands for "Structured Query Language," and can be pronounced as either "sequel" or "S-Q-L." It is a query language used for accessing and modifying information in a database. Some common SQL commands include "insert," "update," and "delete."

The language was first created by IBM in 1975 and was called SEQUEL for "Structured English Query Language." Since then, it has undergone a number of changes, many coming from Oracle products.

Features:

The strengths of SQL provide benefits for all types of users, including application programmers, database administrators, managers, and end users. Technically speaking, SQL is a data sublanguage. The purpose of SQL is to provide an interface to a relational database such as Oracle, and all SQL statements are instructions to the database. In this SQL differs from general-purpose programming languages like C and BASIC.
Among the features of SQL are the following:

. It processes sets of data as groups rather than as individual units.

. It provides automatic navigation to the data.

. It uses statements that are complex and powerful individually, and that therefore stand alone.
For example, to retrieve a set of rows from a table, you define a condition used to filter the rows. All rows satisfying the condition are retrieved in a single step and can be passed as a unit to the user, to another SQL statement, or to an application.
You need not deal with the rows one by one, nor do you have to worry about how

they are physically stored or retrieved. All SQL statements use the optimizer, a part of Oracle that determines the most efficient means of accessing the specified data.
Oracle also provides techniques that you can use to make the optimizer perform its

job better.
SQL provides statements for a variety of tasks, including:

. Querying data

. Inserting, updating, and deleting rows in a table

. Creating, replacing, altering, and dropping objects

. Controlling access to the database and its objects

. Guaranteeing database consistency and integrity
Define DBA. Discuss responsibilities of DBA.

Ans:
A personal database is typically maintained by the individual who owns it and uses it.

However, corporate or enterprise-wide databases are typically important enough and complex enough that the task of designing and maintaining the database is entrusted to a professional called the database administrator.
The DBA is responsible for many critical tasks:

Design of the conceptual and physical schemas: The DBA is responsible for interacting with the users of the system to understand what data is to be stored in the DBMS and how it is likely to be used. Based on this knowledge, the DBA must design the conceptual schema (decide what relations to store) and the physical schema (decide how to store them). The DBA may also design widely used portions of the external schema, although users will probably augment this schema by creating additional views.
Security and authorization: The DBA is responsible for ensuring that unauthorized data access is not permitted. In general, not everyone should be able to access all the data. In a relational DBMS, users can be granted permission to access only certain views and relations. For example, although you might allow students to _nd out course enrollments and who teaches a given course, you would not want students to see faculty salaries or each others' grade information. The DBA can enforce this policy by giving students permission to read only the

Courseinfo view.
Data availability and recovery from failures: The DBA must take steps to ensure that if the system fails, users can continue to access as much of the uncorrupted data as possible. The DBA must also work to restore the data to a consistent state. The DBMS provides software support for these functions, but the DBA is responsible for implementing procedures to back up the data periodically and to maintain logs of system activity (to facilitate recovery from a crash).
Database tuning: The needs of users are likely to evolve with time. The DBA is responsible for modifying the database, in particular the conceptual and physical schemas, to ensure adequate performance as user requirements change.

Q. Explain the need of DDL and DML with an Ex.

Ans: SQL is Non-procedural language in which you must describe exactly how To access and manipulate data , SQL specifies what to do.
SQL Commands fall into 3 categories:

 DDL(Data Definition Language)

 DML(Data Manipulation Language)

 DCL(Data Control Language)
Data Definition Language: This subset of SQL supports the creation, deletion, and modification of definitions for tables and views. Integrity constraints can be defined on tables, either when the table is created or later. The DDL also provides commands for specifying access rights or privileges to tables and views. Although the standard does not discuss indexes, commercial implementations also provide commands for creating and deleting indexes.
DDL is used to create and remove database objects ..

 Ex: CREATE, ALTER, DROP
In order to create a table, the DDL, CREATE is used and the columns of the table along with the data types and the width are to be specified.

Ex: Create table student (roll_no number(5),

 name varchar(20),

 Birth_date date);
Alter : alter command alter or modify the existing table :
Ex: Alter table student add primary key(id);

Ex: Alter table student add(name varchar2(20);

Drop command is used to remove the table from data storage area.

Ex :Drop table student;

DML(Data Manipulation Language) : A DBMS enables users to create, modify, and query data through a data manipulation language (DML). Thus, the query language is only one part of the DML, which also provides constructs to insert, delete, and modify data.
DML is used to manipulate the data in the database.

DML command are:

Ex : INSERT , DELETE , UPDATE ,SELECT
To insert the records:
Ex : insert into students values (101,’sharan’);

To delete the records:

Ex: delete from student where id=101;

To select the records:

Ex: select * from student;

To update the records:

Ex: update student set name=’srs’ where name=’sharan’;

Cursors:
The set of rows returned by a query can consist of zero, one, or multiple rows, depending on how many rows meet the search criteria. When a query returns multiple rows, it is necessary to explicitly declare a cursor to process the rows. A cursor is similar to a file variable or file pointer, which points to a single row (tuple) from the result of a query.
Cursors should be declared in the declarative part and are controlled by three commands: OPEN, FETCH, and CLOSE. The cursor is initialized with the OPEN statement, which executes the query, retrieves the resulting set of rows, and sets the cursor to a position before the first row in the result of the query. This becomes the current row for the cursor. The FETCH statement, when executed for the first time, retrieves the first row into the program variables and sets the cursor to point to that row. Subsequent executions of FETCH advance the cursor to the next row in the result set, and retrieve that row into the program variables. This is similar to the traditional record-at-a-time file processing. When the last row has been processed, the cursor is released with the CLOSE statement.
Example E3 displays the SSN of employees whose salary is greater than their supervisor’s salary.

E3:

DECLARE

emp_salary NUMBER;

emp_super_salary NUMBER;

emp_ssn CHAR (9);

emp_superssn CHAR (9);

CURSOR salary_cursor IS

SELECT ssn, salary, superssn FROM employee;

BEGIN

OPEN salary_cursor;

LOOP

FETCH salary_cursor INTO emp_ssn, emp_salary, emp_superssn;

EXIT WHEN salary_cursor%NOTFOUND;

IF emp_superssn is NOT NULL THEN

SELECT salary INTO emp_super_salary

FROM employee

WHERE ssn = emp_superssn;

IF emp_salary > emp_super_salary THEN

dbms_output.put_line(emp_ssn);

END IF;

END IF;

END LOOP;

IF salary_cursor%ISOPEN THEN CLOSE salary_cursor;

EXCEPTION

WHEN NO_DATA_FOUND THEN

dbms_output.put_line (‘Errors with ssn ‘ | | emp_ssn);

IF salary_cursor%ISOPEN THEN CLOSE salary_cursor;

END;

In the above example, the SALARY_CURSOR loops through the entire employee table until the cursor fetches no further rows. The exception part handles the situation where an incorrect supervisor ssn may be assigned to an employee. The %NOTFOUND is one of the four cursor attributes, which are the following:
• %ISOPEN returns TRUE if the cursor is already open.

• %FOUND returns TRUE if the last FETCH returned a row, and returns FALSE if the last FETCH failed to return a row.

• %NOTFOUND is the logical opposite of %FOUND.

• %ROWCOUNT yields the number of rows fetched.

Triggers:

In Oracle, active rule capability is provided by a database trigger—stored procedure (or rule) that is implicitly executed (or fired) when the table with which it is associated has an insert, delete, or update performed on it . Triggers can be used to enforce additional constraints or to automatically perform additional actions that are required by business rules or policies that go beyond the standard key, entity integrity, and referential integrity constraints imposed by the system.

· Objective: to monitor a database and take action when a condition occurs

· Triggers are expressed in a syntax similar to assertions and include the following:

· event (e.g., an update operation)

· condition

· action (to be taken when the condition is satisfied)

· A trigger to compare an employee’s salary to his/her supervisor during insert or update operations:

CREATE TRIGGER INFORM_SUPERVISOR

BEFORE INSERT OR UPDATE OF

SALARY, SUPERVISOR_SSN ON EMPLOYEE

FOR EACH ROW

WHEN

(NEW.SALARY> (SELECT SALARY FROM EMPLOYEE

 WHERE SSN=NEW.SUPERVISOR_SSN))

INFORM_SUPERVISOR (NEW.SUPERVISOR_SSN,NEW.SSN;

Programming in PL/SQL :

PL/SQL is Oracle’s procedural language extension to SQL. PL/SQL offers software engineering features such as data encapsulation, information hiding, overloading, and exception handling to the developers. It is the most heavily used technique for application development in Oracle.

PL/SQL is a block-structured language. That is, the basic units—procedures, functions and anonymous blocks—that make up a PL/SQL program are logical blocks, which can contain any number of nested sub blocks. A block or subblock groups logically related declarations and statements. The declarations are local to the block and cease to exist when the block completes.
As illustrated below, a PL/SQL block has three parts:
 (1) a declaration part where variables and objects are declared

 (2) an executable part where these variables are manipulated

 (3) an exception part where exceptions or errors raised during execution can be handled.

[DECLARE

---declarations]

BEGIN

---statements

[EXCEPTION

---handlers]

END;

In the declaration part—which is optional—variables are declared. Variables can have any SQL data type as well as additional PL/SQL data types. Variables can also be assigned values in this section. Objects are manipulated in the executable part, which is the only required part. Here data can be processed using conditional, iterative, and sequential flow-of-control statements such as IF-THEN-ELSE, FOR-LOOP, WHILE-LOOP, EXIT-WHEN, and GO-TO. The exception part handles any error conditions raised in the executable part. The exception could be user-defined errors or database errors or exceptions. When an error or exception occurs, an exception is raised and the normal execution stops and control transfers to the exception-handling part of the PL/SQL block or subprogram.

Suppose we want to write PL/SQL programs to process the database . As a first example, E1, we write a program segment that prints out some information about an employee who has the highest salary as follows:

E1:

DECLARE

v_fname employee.fname%TYPE;

v_minit employee.minit%TYPE;

v_lname employee.lname%TYPE;

v_address employee.address%TYPE;

v_salary employee.salary%TYPE;

BEGIN

SELECT fname, minit, lname, address, salary

INTO v_fname, v_minit, v_lname, v_address, v_salary

FROM EMPLOYEE

WHERE salary = (select max (salary) from employee);

DBMS_OUTPUT.PUT_LINE (v_fname, v_minit, v_lname, v_address, v_salary);

EXCEPTION

WHEN OTHERS

DBMS_OUTPUT.PUT_LINE (‘Error Detected’);

END;

In E1, we need to declare program variables to match the types of the database attributes that the program will process. These program variables may or may not have names that are identical to their corresponding attributes. The %TYPE in each variable declaration means that that variable is of the same type as the corresponding column in the table. DBMS_OUTPUT.PUT_LINE is PL/SQL’s print function. The error handling part prints out an error message if Oracle detects an error—in this case, if more than one employee is selected—while executing the SQL. The program needs an INTO clause, which specifies the program variables into which attribute values from the database are retrieved.

[image: image7.png]

[image: image8.png]

[image: image9.png]

[image: image10.png]

By: Sharan kumar S.R, Lecturer in Computer Science Dept., Veerashaiva College, Ballari.

