
Introduction to UNIX (Module I)

Page 1 of 25 From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari

History of UNIX

UNIX development was started in 1969 at Bell Laboratories in New Jersey. Bell

Laboratories was (1964–1968) involved on the development of a multi-user,time-sharing operating

system called Multics (Multiplexed Information and Computing System). Multics was a failure. In early

1969, Bell Labs withdrew from the Multics project.

Bell Labs researchers who had worked on Multics (Ken Thompson, Dennis Ritchie, Douglas

McIlroy, Joseph Ossanna, and others) still wanted to develop an operating system for their own and Bell

Labs’ programming, job control, and resource usage needs. When Multics was withdrawn Ken

Thompson and Dennis Ritchie needed to rewrite an operating system in order to play space travel on

another smaller machine (a DEC PDP-7 [Programmed Data Processor 4K memory for user programs).

The result was a system called UNICS (UNiplexed Information and Computing Service) which was an

'emasculated Multics'.

The first version of Unix was written in the low-level PDP-7 assembler language. Later, a language

called TMG was developed for the PDP-7 by R. M. McClure. Using TMG to develop a FORTRAN

compiler, Ken Thompson instead ended up developing a compiler for a new high-level language he

called B, based on the earlier BCPL language developed by Martin Richard. When the PDP-11 computer

arrived at Bell Labs, Dennis Ritchie built on B to create a new language called C. Unix components were

later rewritten in C, and finally with the kernel itself in 1973.

Unix V6, released in 1975 became very popular. Unix V6 was free and was distributed with its source

code.

In 1983, AT&T released Unix System V which was a commercial version.

Meanwhile, the University of California at Berkeley started the development of its own version of Unix.

Berkeley was also involved in the inclusion of Transmission Control Protocol/Internet Protocol (TCP/IP)

networking protocol.

The following were the major mile stones in UNIX history early 1980's

• AT&T was developing its System V Unix.

• Berkeley took initiative on its own Unix BSD (Berkeley Software Distribution) Unix.

• Sun Microsystems developed its own BSD-based Unix called SunOS and later was renamed to Sun

Solaris.

• Microsoft and the Santa Cruz operation (SCO) were involved in another version of UNIX

called XENIX.

• Hewlett-Packard developed HP-UX for its workstations.

• DEC released ULTRIX.

• In 1986, IBM developed AIX (Advanced Interactive eXecutive).

Introduction to UNIX (Module I)

Page 2 of 25 From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari

Salient Features of UNIX

Following are some of the important features of Unix Operating System.

 Portable − Portability means software can work on different types of hardware in same way. Unix

kernel and application programs supports their installation on any kind of hardware platform.

 Open Source − Unix source code is freely available and it is community based development

project. Multiple teams work in collaboration to enhance the capability of Unix operating system

and it is continuously evolving.

 Multi-User Capability: - Multi-user operational system permits several users to use the

same computer to carry out their job. Several terminals are connected to a single powerful

computer and each user of the terminal can be a programmer, program access files and

prints document at the same time. Need for the multi-user environment arises when

several programmers work on developing module of the same software. Multi-user

environment ensures complete coordination and compatibility and saves a considerable

amount of time by allowing several users on a set of information at a time. Buying single multi-

user computer is far more economical and efficient than buying several single users computers.

 Multiprogramming − Unix is a multiprogramming system means multiple applications

can run at same time.

 Multitasking Capability: - This capability allows the system to perform several tasks

simultaneously. For instance, UNIX can print one document, edit another and sort a list of files at

the same time. Multiple tasks can be carried out by placing other tasks in the background while

you work on one task at a time. The current tasks are said to be in the foreground. Normally the

tasks that do not require active interaction from the user are placed in the background; the lower

will be the system response.

 Hierarchical File System − Unix provides a standard file structure in which system files/ user files

are arranged.

 Shell − Unix provides a special interpreter program which can be used to execute commands

of the operating system. It can be used to do various types of operations, call application programs.

etc.

 Security − Unix provides user security using authentication features like password protection/

controlled access to specific files/ encryption of data.

 Communication: - UNIX supports two major types of communication:

1. Communication between different terminals connected to the same computer.
2. Communication between users of the one computer at the specific location to the users of

another type and size of a computer located elsewhere. The two computers may be located in

different offices or different countries or continents. These types of communication is achieved

by a mail system based on wide area and may be connected through telephone lines or

satellite.

Introduction to UNIX (Module I)

Page 3 of 25 From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari

UNIX Architecture

The following illustration shows the architecture of a UNIX system −

The architecture of a UNIX System consists of the following layers –

Kernel

The kernel of UNIX is the hub of the operating system: it allocates time and memory to programs

and handles the file store and communications in response to system calls. As an illustration of

the way that the shell and the kernel work together, suppose a user types rm my file (which has the effect

of removing the file my file). The shell searches the file store for the file containing the program rm, and

then requests the kernel, through system calls, to execute the program rm on my file. When the process

rm my file has finished running, the shell then returns the UNIX prompt % to the user, indicating

that it is waiting for further commands.

Amongst the functions performed by the kernel are:

 Managing the machine's memory and allocating it to each process.

 Scheduling the work done by the CPU so that the work of each user is carried out as efficiently as

is possible. Organising the transfer of data from one part of the machine to another.

 Accepting instructions from the shell and carrying them out.

 Enforcing the access permissions that are in force on the file system.

The shell:

The shell acts as an interface between the user and the kernel. When a user logs in, the login

program checks the username and password, and then starts another program called the shell. The

shell is a command line interpreter (CLI). It interprets the commands the user types in and arranges

for them to be carried out. The commands are themselves programs: when they terminate, the

Introduction to UNIX (Module I)

Page 4 of 25 From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari

shell gives the user another prompt (% on our systems). The user can

customise his/her own shell, and users can use different shells on the same machine.

The shell keeps a list of the commands you have typed in. If you need to repeat a command, use the

cursor keys to scroll up and down the list or type history for a list of previous commands.

You can use any one of these shells if they are available on your system. And you can switch

between the different shells once you have found out if they are available.

 Bourne shell (sh)

 C shell (csh)

 TC shell (tcsh)

 Korn shell (ksh)

 Bourne Again SHell (bash)

 Features of Shell:

Shell Features Description

Command interpreter Shell interprets the valid user entered commands

to the kernel understandable language. Shell

should understand which program to be

invoked in order to perform that command.

Prompts Ideally prompts are shown as “$” or “#”

Shell scripts Uses multiple shell commands logically to create

a script i.e. runs more than one commands at a

time.

I/O redirection and Pipes These features in Shell allow connecting

programs together and making programs

process their inputs from files

Hardware layer − Hardware consists of all peripheral devices (RAM/ HDD/ CPU etc).

Utilities and Application

The final layer of the UNIX OS is the Utilities and Applications layer. This layer includes the

commands, word processors, graphic programs and database management programs. Traditionally,

these programs were accessed by typing the commands to start the program on the command line.

They can still be accessed in this way, but they can now also be accessed through the GUI.

UNIX command format

Syntax of UNIX Commands

UNIX commands can be very simple one word commands or they can take a number of additional

arguments (parameters) as part of the command. In general, a UNIX command has the following general

form...

Introduction to UNIX (Module I)

Page 5 of 25 From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari

Command options(s) filename(s)

Let’s look at each of these parts a bit more closely...

 The command is the name of the utility or program that we are going to execute.

 The options are passed into the command to modify the way the command works. It is typical for

these options to have be a hyphen followed by a single character, such as-l. It is also a common

convention under Linux to have options that are in the form of 2 hyphens followed by a word or

hyphenated words, such as --color or --pretty-print.

 The filename is the last argument for a lot of UNIX commands. It is simply the file or files that

you want the command to work on. Take note that not all commands work on files, such as ssh

which takes the name of a host as its argument.

Common UNIX Conventions

 In UNIX the command is almost always entered in all lower case characters.

 Typically, any options come before filenames.

 Many times individual options may need a word after them to designate some additional meaning

to the command.

UNIX commands are classified into two types

 Internal Commands - Ex: cd, source, fg

 External Commands - Ex: ls, cat

Let us look at these in detail

Internal Command:

Internal commands are something which is built into the shell. For the shell built in commands,

the execution speed is really high. It is because no process needs to be spawned for executing it. For

example, when using the “cd” command, no process is created. The current directory simply gets

changed on executing it.

External Command:

External commands are not built into the shell. These are executables present in a separate file.

When an external command has to be executed, a new process has to be spawned and the command gets

executed. For example, when you execute the "cat" command, which usually is at /usr/bin, the executable

/usr/bin/cat gets executed.

How to get the list of Internal commands?

You can get only if you are in bash shell. Bash shell has a command called "help" which will list out

all the built-in shell commands.

$ help

alias [-p] [name[=value] ...]

bg [job_spec ...]

bind [-lpvsPVS] [-m keymap] [-f fi break [n] builtin [shell-builtin [arg ...]] caller [EXPR]

Introduction to UNIX (Module I)

Page 6 of 25 From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari

case WORD in [PATTERN [| PATTERN]. cd [-L|-P] [dir]

command [-pVv] command [arg ...] compgen [-abcdefgjksuv] [-o option

.....]

How to find out whether a command is internal or external?

type command:

$ type cd

cd is a shell builtin

$ type cat

cat is /bin/cat

For the internal commands, the type command will clearly say its shell built-in, however for the external

commands, it gives the path of the command from where it is executed. Internal

vs External? The question whether should we use an internal command or an external command OR

which is better always does not make sense. Because in most of the situations you will end up using the

command which does your job which could be either internal or external.

The big difference in internal vs external command is performance. Internal command is much much

faster compared to external for the simple reason that no process needs to be spawned for an internal

command since it is all built-into the shell. So, as the size of a script gets bigger, using external

commands a lot does adds to its performance.

Not always we get a choice to choose an internal over an external command. However, a careful

look at our scripting practices, we might find quite a few places where we can avoid external

commands.

Example:

Say to add 2 numbers say x & y: Not

good:

z=`expr $x+$y`

Good:

let z=x+y

let is a shell built-in command, whereas expr is an external command. Using expr will be slower.

This might be very negligible when you are using it at an one-off instance. Using it in a place say on

every record of a file containing million records does give a different dimension to it.

Introduction to UNIX (Module I)

Page 7 of 25 From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari

Directory related commands

ls (list)

When you first login, your current working directory is your home directory. Your home directory has

the same name as your user-name, for example, sgt, and it is where your personal files and subdirectories

are saved.

To find out what is in your home directory, type

$ ls

The ls command (lowercase L and lowercase S) lists the contents of your current working directory.

There may be no files visible in your home directory, in which case, the UNIX prompt will be returned.

Alternatively, there may already be some files inserted by the System Administrator when your account

was created.

ls does not, in fact, cause all the files in your home directory to be listed, but only those ones whose name

does not begin with a dot (.) Files beginning with a dot (.) are known as hidden files and usually contain

important program configuration information. They are hidden because you should not change them

unless you are very familiar with UNIX!!!

To list all files in your home directory including those whose names begin with a dot, type

$ ls -a

As you can see, ls -a lists files that are normally hidden.

ls is an example of a command which can take options: -a is an example of an option. The options change

the behavior of the command. There are online manual pages that tell you which options a particular

command can take, and how each option modifies the behavior of the command.

Change directory cd

This command changes your current directory location. By default, your Unix login session begins in your

home directory.

To switch to a subdirectory (of the current directory) named myfiles, enter:

cd myfiles

To switch to a directory named /home/dvader/empire_docs, enter:

cd /home/dvader/empire_docs

To move to the parent directory of the current directory, enter:

cd ..

To move to the root directory, enter:

cd /

To return to your home directory, enter:

cd

Introduction to UNIX (Module I)

Page 8 of 25 From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari

Make directory mkdir

This command will make a new subdirectory.

To create a subdirectory named mystuff in the current directory, enter:

mkdir mystuff

To create a subdirectory named morestuff in the existing directory named /tmp, enter:

mkdir /tmp/morestuff

Note: To make a subdirectory in a particular directory, you must have permission to write to

that directory.

Present Working Directory pwd

This command reports the current directory path. Enter the command by itself:

pwd

Remove Directory rmdir

This command will remove a subdirectory. To remove a subdirectory named oldstuff, enter:

rmdir oldstuff

Note: The directory you specify for removal must be empty. To clean it out, switch to the directory

and use the ls and rm commands to inspect and delete files.

set

This command displays or changes various settings and options associated with your Unix session.

To see the status of all settings, enter the command without options:

set

If the output scrolls off your screen, combine set with less:

set | less

The syntax used for changing settings is different for the various kinds of Unix shells; see the man entries

for set and the references listed at the end of this document for more

information.

File related commands

Display ContentofaFile

cat

Read/scan the man page for cat with the command:

man cat

Use this command to display the contents of a file. What happens?

cat filename

Now try this command notice the difference. How many lines are in the file?

https://kb.iu.edu/d/afsk#less
https://kb.iu.edu/d/afsk#man
https://kb.iu.edu/d/afsk#man

Introduction to UNIX (Module I)

Page 9 of 25 From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari

cat -n filename

The cat command is more often used for purposes other than just displaying a file. Try these commands

to "concatenate" two files into a new, third file:

cat file1 - first, show file1

cat file2 - then, show file2

cat file1 file2 > newfile - now do the actual concatenate

cat newfile - finally, show the result

Counting Words in a File

You can use the wc command to get a count of the total number of lines, words, and characters

contained in a file. Following is a simple example to see the information about the file created above −

$ wc filename

2 19 103 filename

$

Here is the detail of all the four columns −

First Column − Represents the total number of lines in the file.

Second Column − Represents the total number of words in the file.

Third Column − Represents the total number of bytes in the file. This is the actual size of the file.

Fourth Column − Represents the file name.

You can give multiple files and get information about those files at a time. Following is simple

syntax −

$ wc filename1 filename2 filename3

Copying Files

To make a copy of a file use the cp command. The basic syntax of the command is −

$ cp source_file destination_file

Following is the example to create a copy of the existing file filename.

$ cp filename copyfile

You will now find one more file copy file in your current directory. This file will exactly be the same as

the original file filename.

Copying and moving file cp

Read/scan the man page for cp with the command:

man cp

Copy an existing file in your current directory to another file in the current directory and then list your

directory to prove that it was done:

Introduction to UNIX (Module I)

Page 10 of 25 From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari

cp file1 file2

ls

Copy a file from a different directory to your current directory and then list your directory to prove that it

was done:

cp /etc/ifconfig my.config ls

Use the copy command with the "inquire" option. What happens when you try to copy one file to an

already existing file?

cp -i file1 file2

Use the recursive option to copy an entire subdirectory to a new subdirectory and then list both directories

to prove that it worked:

cp -R subdir1 subdir4 ls

subdir1 subdir4

The copy command accepts "wildcard" characters. Try the command below. What did it do? List the

subdir1 subdirectory to find out.

cp samp* subdir1

ls subdir1

If you are copying a file from another location to the current directory and want its name to remain the

same, you can use the shorthand "." to indicate the current directory. Try this for example and note what

happens:

cp /etc/ifconfig . ls

Renaming a file mv

Read/scan the man page for mv with the command:

man mv

The mv command can be used for renaming files. Try this command and then list your files to prove that

the command worked:

mv my.config new.config ls

mv can be used to rename directories also. Try this command and then list your files to prove that the

command worked:

mv subdir4 dir4 ls

The mv command is also used for moving files. Use the command below to move new. sample into a new

location, then list your files to prove that the command worked:

Introduction to UNIX (Module I)

Page 11 of 25 From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari

mv new. Sample dir4 ls

ls dir4

Like many other UNIX commands, mv recognizes wildcard characters. Try the command below and then

list your files to prove that the command worked:

mv *env* dir4 ls

ls dir4

more

Read/scan the man page for more with the command:

man more

Use the more command to read a file:

more filename

As you are reading, notice the "More" prompt at the bottom of the page. Try pressing the

return key - what happens?

Try pressing the space bar once - what happens? Type the

letter b - what happens?

Use the search forward feature to find a word say, "MARCH" by entering the command:

/MARCH

Now use the search backward feature to find a string of words say, "black hole" by entering the command:

?black hole

more will continue until the end of the file is reached or until you type q for quit. Try typing q

to quit.

head and tail Read/scan the man page for head with the command:

man head

Display the top of a file with the command below. How many lines do you count?

head filename

Now try this command and note how many lines are displayed this time?

head -5 filename

Read/scan the man page for tail with the command:

man tail

Display the same file with the tail command. How is it different and how many lines do you count?

tail filename Now try this command and note how many lines are displayed this time?

tail -5 filename

Remove a file rm

Read/scan the man page for rm with the command:

man rm

Use the rm command to delete a file. List your directory after the command completes.

rm new.config ls

Introduction to UNIX (Module I)

Page 12 of 25 From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari

cd to another subdirectory say, subdir2. List the directory to view its contents. Then use the "*" wildcard

to remove all of the files. NOTE: using rm in this manner can be dangerous! If you are in the

wrong directory, you'll remove files you didn't mean to remove. You may want to use the -i option

to protect yourself from accidents.

cd subdir2

ls

rm -i *

ls

Get out of the subdir2 subdirectory by using the command cd .. Now try to use rm to remove a

directory. What happens

scd ..

rm subdir3

This time, include the -r option when you try to remove a directory. For example, try removing

some subdirectory subdir3. What happens?

rm -r subdir3 ls

file

Read/scan the man page for file with the command:

man file

Use the file command to determine a file's type:

file file1

Now try it with a directory say, dir4:

file dir4

Finally, try it with a wildcard character;

file *

find

Read/scan the man page for find with the command:

man find

Use the find command to find the file new.config.

find . -name new.config -print

Now use the find command to find all files with "file" as part of their name. Don't forget to put the wildcard

specification in quotes - it won't work otherwise:

find . -name 'file*' -print

Try to find only directories with "file" as part of their name. Are there any?

find . -name 'file*' -type d -print diff and

sdiff

Read/scan the man page for diff with the command:

man diff

Use the diff command to determine the differences between two files:

diff names1 names2

Use the diff command to determine the differences between two directories.

Introduction to UNIX (Module I)

Page 13 of 25 From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari

diff subdir1 dir4

Try using sdiff to display the differences between names1 and names2:

sdiff names1 names2

Now try sdiff specifying that the screen width is 80 characters...not the default 130:

sdiff -w 80 names1 names2

sort

Read/scan the man page for sort with the command:

man sort

Use the cat command to look at an unsorted list of names. Notice that there are multiple columns of

information and that the list is not alphabetically sorted.

cat name.list
Use the sort command to perform a basic sort of the list:

sort name.list

Do the same sort, but send the output to a file. Then use the cat utility to view the file:

sort name.list > sorted.list ; cat sorted.list
Sort the list by first names. This requires skipping over the first field, which is the last name:

sort +1 name.list
Sort the list by department. This requires skipping over the first four fields and using the - b option to

ignore blank characters:

sort -b +4 name.list

From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari Page 14 of 25

UNIX (Module I)

From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari Page 15 of 25

UNIX (Module I)

From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari Page 16 of 25

UNIX (Module I)

INFORMATION COMMANDS

history Lists the commands typed during the

session. Options: -r displays the list in

reverse.

hostname Displays the computer’s or server’s name on

the terminal.

who Displays who is on the system. who am

Displays the invoking user. i

wc Counts and displays the number of lines,

words and characters of a file. Usage: wc

[options] Options: -c count character only.

-l count lines only.

-w count words only.

whatis Displays the command description.

id Displays the user id and the group id of the

invoking user.

tty Displays users terminal name

Date Displays the system date & time

Cal Display the calendar

FILE SYSTEM IN UNIX (UNIX FILE SYSTEM)

A file system is the methods and data structures that an operating system uses to keep track of files on

a disk or partition; that is, the way the files are organized on the disk. The word is also used to refer to

a partition or disk that is used to store the files or the type of the file system.

What is a file in Unix?

Everything in Unix is a file or a process. In Unix a file is just a destination for or a source of a stream of

data. Thus a printer, for example, is a file and so is the screen. A process is a program that is currently

running.

What is the use of directory in Unix?

Like that legacy operating system, the files on a Linux system are arranged in what is called a

hierarchical directory structure. This means that they are organized in a tree-like pattern of directories

(called folders in other systems), which may contain files and other directories.

What is the meaning of mounting in Unix?

The mount command mounts a storage device or file system, making it accessible and attaching

it to an existing directory structure. The umount command "unmounts" a mounted file system, informing

the system to complete any pending read or write operations, and safely detaching it.

From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari Page 17 of 25

UNIX (Module I)

File system structure or Directory structure

A UFS volume is composed of the following parts:

 A few blocks at the beginning of the partition reserved for boot blocks (which must be

initialized separately from the file system)

 A superblock, containing a magic number identifying this as a UFS file system, and some other

vital numbers describing this file system's geometry and statistics and behavioral tuning

parameters

 A collection of cylinder groups. Each cylinder group has the following components:

 A backup copy of the superblock

 A cylinder group header, with statistics, free lists, etc., about this cylinder group, similar to

those in the superblock

 A number of inodes, each containing file attributes

 A number of data blocks

DISK LAYOUT IN CLASSICAL UNIX SYSTEM

https://en.wikipedia.org/wiki/Bootstrapping_(computing)
https://en.wikipedia.org/wiki/Magic_number_(programming)
https://en.wikipedia.org/wiki/Inode
https://en.wikipedia.org/wiki/Block_(data_storage)

From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari Page 18 of 25

UNIX (Module I)

Boot Block: located in the first few sectors of a file system. The boot block contains the initial bootstrap

program used to load the operating system. Typically, the first sector contains a bootstrap program

that reads in a larger bootstrap program from the next few sectors, and so forth.

Super Block: The superblock is a unique data structure in a file system (though multiple copies exist to

guard against corruption). The superblock holds metadata about the file system, like which inode is the

top-level directory and the type of file system used.

Each file system has one super block (+ duplicate super block) it contains info about

1. type of file system (ext2, ext3...)

2. the block size

3. pointers to a list of free blocks

4. the inode number of the root directory

5. magic number

inode list: An inode (short for "index node") is a bunch of attributes about a file that Unix stores. There

is one inode for each file (though with some file systems, Unix has to create its own inodes because

the information is spread around the file system). The inode stores information like who owns the

file, how big the file is, and who is allowed to open the file. Each inode also contains a number unique

to the file system partition; it's like a serial number for the file described by that inode.

This structure consists of info of file about

1. file ownership indication

2. file type (e.g., regular, directory, special device, pipes, etc.)

3. file access permissions. May have setuid (sticky) bit set.

4. time of last access, and modification

5. number of links (aliases) to the file

6. pointers to the data blocks for the file

7. size of the file in bytes (for regular files), major and minor device numbers for special

devices.

Inodes include pointers to the data blocks. Each inode contains 15 pointers:

 the first 12 pointers point directly to data blocks

 the 13th pointer points to an indirect block, a block containing pointers to data blocks

 the 14th pointer points to a doubly-indirect block, a block containing 128 addresses of singly

indirect blocks

 the 15th pointer points to a triply indirect block (which contains pointers to doubly indirect

blocks, etc.

From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari Page 19 of 25

UNIX (Module I)

inode

inode a data structure that keeps track of all the information about a file.

You store your information in a file, and the operating system stores the information about a file in an

inode (sometimes called as an inode number).

Information about files(data) are sometimes called metadata. So you can even say it in another way, "An

inode is metadata of the data."

henever a user or a program needs access to a file, the operating system first searches for the exact and

unique inode (inode number), in a table called as an inode table. In fact the program or the user who

needs access to a file, reaches the file with the help of the inode number found from the inode table.

To reach a particular file with its "name" needs an inode number corresponding to that file. But to reach

an inode number you don’t require the file name. In fact, with the inode number you can get the data.

Inode Structure of a File

Now let’s see how the structure of an inode of a file look like.

Mode:

This keeps information about two things, one is the permission information, the other is the type of

inode, for example an inode can be of a file, directory or a block device etc.

Owner Info: Access details like owner of the file, group of the file etc.

From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari Page 20 of 25

UNIX (Module I)

Size: This location stores the size of the file in terms of bytes.

Time Stamps: it stores the inode creation time, modification time, etc.

Now comes the important thing to understand about how a file is saved in a partition with the help of

an inode.

Block Size: Whenever a partition is formatted with a file system.It normally gets formatted with a

default block size. Now block size is the size of chunks in which data

will be spread. So if the block size is 4K, then for a file of 15K it will take 4 blocks(because

4K*4 16), and technically speaking you waste 1 K.

Direct Block Pointers:

In an ext2 file system an inode consists of only 15 block pointers. The first 12 block pointers are called

as Direct Block pointers. Which means that these pointers point to the address of the blocks containing

the data of the file. 12 Block pointers can point to 12 data blocks. So in total the Direct Block pointers

can address only 48K(12 * 4K) of data. Which means if the file is only of 48K or below in size, then

inode itself can address all the blocks

containing the data of the file.

Now What if the file size is above 48K?

Indirect Block Pointers:

whenever the size of the data goes above 48k(by considering the block size as 4k), the 13th pointer in

the inode will point to the very next block after the data(adjacent block after 48k of data), which inturn

will point to the next block address where data is to be copied.

Now as we have took our block size as 4K, the indirect block pointer, can point to 1024 blocks

containing data(by taking the size of a block pointer as 4bytes, one 4K block can point to 1024 blocks

because 4 bytes * 1024 = 4K).

which means an indirect block pointer can address, upto 4MB of data(4bytes of block pointer in 4K

block, can point and address 1024 number of 4K blocks which makes the data size of

4M)

Double indirect Block Pointers:

Now if the size of the file is above 4MB + 48K then the inode will start using Double Indirect Block

Pointers, to address data blocks. Double Indirect Block pointer in an inode will point to the block that

comes just after 4M + 48K data, which intern will point to the blocks where the data is stored.

Double Indirect block pointer also is inside a 4K block as every blocks are 4K, Now block pointers

are 4 bytes in size, as mentioned previously, so Double indirect block pointer can

From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari Page 21 of 25

UNIX (Module I)

address 1024 Indirect Block pointers (which means 1024 * 4M =4G). So with the help of a double

indirect Block Pointer the size of the data can go upto 4G.

Triple Indirect Block Pointers:

Now this triple Indirect Block Pointers can address upto 4G * 1024 = 4TB, of file size. The fifteenth

block pointer in the inode will point to the block just after the 4G of data, which intern will point to

1024 Double Indirect Block Pointers.

So after the 12 direct block pointers, 13th block pointer in inode is for Indirect block pointers, and 14th

block pointer is for double indirect block pointers, and 15th block pointer is for triple indirect block

pointers.

Now this is the main reason why there are limits to the full size of a single file that you can have in a

file system.

Direct and Indirect Blocks in Inode

From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari Page 22 of 25

UNIX (Module I)

Inodes resides on the disk and the kernel reads them into an into memory which we can call

as in-core inodes. Disk inodes contains the following information:

File access permissions and time (last access / modified etc.)

File ownership information.

Type of the file (regular / directory/block special/pipe)

Number of links to the file

- File size and organization on disk (the file data may spread across several different and far- spaced

disk location)

The In-core copy of inodes contains all of the above information, but it also contains the

following additional information:

- Status (locked / process is waiting for it to become unlocked / in-core copy has been modified

and thus differs from the copy on the disk / mounted)

- Logical Device number of the file system

- Inode Number. Since inodes are stored in a sequential manner on the disk, the kernel uses an

identifier of that array to refer to its in-core copy.

- Pointer to other in-core inodes. Kernel maintains a hash queue of inodes according to the logical device

number and the inode numbers. Kernel also maintains a list of free inodes.

- Reference count which indicates the number of instances of the file that are currently active.

* Structure of a Regular file on Disk As

stated previously inodes contains the table of content of the file data on disk. As each disk block can be

referenced by a number, the table of content is nothing but a sequence of disk block numbers. The file

data may not always be stored in contiguous memory locations, hence

http://edusagar.com/articles/view/23/Inode-file-structure-on-Unix
http://edusagar.com/articles/view/23/Inode-file-structure-on-Unix
http://edusagar.com/articles/view/23/Inode-file-structure-on-Unix
http://edusagar.com/articles/view/23/Inode-file-structure-on-Unix
http://edusagar.com/articles/view/23/Inode-file-structure-on-Unix
http://edusagar.com/articles/view/23/Inode-file-structure-on-Unix
http://edusagar.com/articles/view/23/Inode-file-structure-on-Unix
http://edusagar.com/articles/view/23/Inode-file-structure-on-Unix
http://edusagar.com/articles/view/23/Inode-file-structure-on-Unix
http://edusagar.com/articles/view/23/Inode-file-structure-on-Unix
http://edusagar.com/articles/view/23/Inode-file-structure-on-Unix

Introduction to UNIX (Module I)

From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari Page 23 of 23

we will need to keep track of all the block numbers on the disk. The system V Unix systems have the

following 13 entries as the table of contents :

The blocks marked "direct" can refer to a single disk block that contains the real data. "single indirect"

block contains the number of a disk block which in itself contains a list of block numbers that

we can reference and they have the real data. Going on the same line, we have "double indirect" and

"triple indirect" blocks. Lets now try to get an estimate of the max limit on the size of a file that Unix

File System can handle.

Assume one block is of 1 Kbytes and a block number is an integer of 4 bytes (32 bits). Thus a block can

have 256 block numbers.

10 direct blocks => 10 K bytes

1 single indirect block with 256 block number entries => 256 K bytes

1 double indirect block with 256 single indirect entries => 64 M bytes

1 triple indirect block with 256 double indirect entries => 16 G bytes

which is far more then what the 4-byte memory address can handle (2^32 => 4 G bytes).

So, whenever a process wants to access any particular offset in a file, it will simply use this table of

indexes and thus would load the appropriate disk block into memory.

* Structure of directory

Directories are the files that give the file system its hierarchical structure. A directory on Unix file

systems is a file which contains a sequence of entries where each entry contains an inode number

and the name of the file contained in the directory. UNIX System V restricts name to a maximum of 14

characters, and 2 byte entry for the inode number making it 16 bytes

per entry.

Byte Offset Inode number File names

0 83 .

16 2 ..

32 1798 init

48 1276 fsck

64 85 clri

80 1268 motd

96 1799 mount

So, that was an insight into the inode data-structure. Follow this link for an understanding of the

interaction between different data structure that link up with inodes.

http://edusagar.com/articles/view/23/Inode-file-structure-on-Unix
http://edusagar.com/articles/view/23/Inode-file-structure-on-Unix
http://edusagar.com/articles/view/23/Inode-file-structure-on-Unix
http://edusagar.com/articles/view/23/Inode-file-structure-on-Unix
http://edusagar.com/articles/view/23/Inode-file-structure-on-Unix
http://edusagar.com/articles/view/24/inode-and-file-descriptor-table-Interaction

