
UNIX (Module IV)

From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari Page 1 of 38

VI editor
The VI editor is the most popular and classic text editor in the Linux family. Below,

are some reasons which make it a widely used editor –

1) It is available in almost all Linux Distributions

2) It works the same across different platforms and Distributions

3) It is user-friendly. Hence, millions of Linux users love it and use it for their editing needs

Nowadays, there are advanced versions of the vi editor available, and the most
popular one is VIM which is Vi Improved. Some of the other ones are Elvis, Nvi, Nano,
and Vile. It is wise to learn vi because it is feature-rich and offers endless possibilities to
edit a file.

To work on VI editor, you need to understand its operation modes. They can be divided
into two main parts.

Command mode:
 The vi editor opens in this mode, and it only understands commands
 In this mode, you can, move the cursor and cut, copy, paste the text
 This mode also saves the changes you have made to the file
 Commands are case sensitive. You should use the right letter case.

Insert mode:
 This mode is for inserting text in the file.
 You can switch to the Insert mode from the command mode by pressing 'i' on the

keyboard
 Once you are in Insert mode, any key would be taken as an input for the file on

which you are currently working.
 To return to the command mode and save the changes you have made you need to

press the Esc key

Starting the vi editor

To launch the VI Editor -Open the Terminal (CLI) and type

vi <filename_NEW> or <filename_EXISTING>

And if you specify an existing file, then the editor would open it for you to edit. Else, you
can create a new file.

UNIX (Module IV)

From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari Page 2 of 38

https://www.guru99.com/images/Creating_a_new_file.png

UNIX (Module IV)

From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari Page 3 of 38

Vi editor commands
 a - Write after cursor (goes into insert mode)
 A - Write at the end of line (goes into insert mode)
 ESC - Terminate insert mode
 u - Undo last change
 U - Undo all changes to the entire line
 o - Open a new line (goes into insert mode)
 dd - Delete line
 3dd - Delete 3 lines.
 D - Delete contents of line after the cursor
 C - Delete contents of a line after the cursor and insert new text. Press ESC key to

end insertion.
 dw - Delete word
 4dw - Delete 4 words
 cw - Change word
 x - Delete character at the cursor
 r - Replace character
 R - Overwrite characters from cursor onward
 s - Substitute one character under cursor continue to insert
 S - Substitute entire line and begin to insert at the beginning of the line
 ~ - Change case of individual character

Note: You should be in the "command mode" to execute these commands. VI editor
is case-sensitive so make sure you type the commands in the right letter-case.

Make sure you press the right command otherwise you will end up making undesirable
changes to the file. You can also enter the insert mode by pressing a, A, o, as required.

Moving within a file
 k - Move cursor up
 j - Move cursor down
 h - Move cursor left
 l - Move cursor right

You need to be in the command mode to move within a file. The default keys for navigation
are mentioned below else; You can also use the arrow keys on the keyboard.

Saving and Closing the file
 Shift+zz - Save the file and quit
 :w - Save the file but keep it open
 :q - Quit without saving
 :wq - Save the file and quit

You should be in the command mode to exit the editor and save changes to the file.

UNIX (Module IV)

From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari Page 4 of 38

Introduction to Shell Scripting

A shell script is a computer program designed to be run by the Unix/Linux shell which
could be one of the following:

 The Bourne Shell
 The C Shell
 The Korn Shell
 The GNU Bourne-Again Shell(BASH)

A shell is a command-line interpreter and typical operations performed by shell scripts
include file manipulation, program execution, and printing text.

Usually shells are interactive that mean, they accept command as input from users

and execute them. However, some time we want to execute a bunch of commands

routinely, so we have type in all commands each time in terminal.

As shell can also take commands as input from file we can write these commands in a file

and can execute them in shell to avoid this repetitive work. These files are called Shell

Scripts or Shell Programs. Shell scripts are similar to the batch file in MS-DOS. Each shell

script is saved with .sh file extension eg. myscript.sh

A shell script have syntax just like any other programming language. If you have any prior
experience with any programming language like Python, C/C++ etc. it would be very easy
to get started with it.

A shell script comprises following elements –

 Shell Keywords – if, else, break etc.

 Shell commands – cd, ls, echo, pwd, touch etc.

 Functions

 Control flow – if..then..else, case and shell loops etc.

Why do we need shell scripts

There are many reasons to write shell scripts –

 To avoid repetitive work and automation

 System admins use shell scripting for routine backups

 System monitoring

 Adding new functionality to the shell etc.

Advantages of shell scripts

 The command and syntax are exactly the same as those directly entered in command

line, so programmer do not need to switch to entirely different syntax

 Writing shell scripts are much quicker

 Quick start

 Interactive debugging etc.

https://en.wikipedia.org/wiki/Batch_file

UNIX (Module IV)

From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari Page 5 of 38

Disadvantages of shell scripts

 Prone to costly errors, a single mistake can change the command which might be

harmful

 Slow execution speed

 Design flaws within the language syntax or implementation

 Not well suited for large and complex task

 Provide minimal data structure unlike other scripting languages. Etc

About Bash

Bash ("Bourne Again Shell") shell as the main shell interpreter. Shell programming
using other common shells such as sh, csh, tcsh, will also be referenced, as they sometime
differ from bash.

Shell programming can be accomplished by directly executing shell commands at the shell
prompt or by storing them in the order of execution, in a text file, called a shell script, and
then executing the shell script. To execute, simply write the shell script file name, once the
file has execute permission (chmod +x filename).

The first line of the shell script file begins with a "sha-bang" (#!) which is not read as a
comment, followed by the full path where the shell interpreter is located. This path, tells
the operating system that this file is a set of commands to be fed into the interpreter
indicated. Note that if the path given at the "sha-bang" is incorrect, then an error message
e.g. "Command not found.", may be the result of the script execution. It is common to name
the shell script with the ".sh" extension. The first line may look like this:

#!/bin/bash

Adding comments: any text following the "#" is considered a comment

To find out what is currently active shell, and what is its path, type the highlighted
command at the shell prompt (sample responses follow):

ps | grep $$

987 tty1 00:00:00 bash

This response shows that the shell you are using is of type 'bash'. next find out the full path
of the shell interpreter

which bash

/bin/bash

This response shows the full execution path of the shell interpreter. Make sure that the
"sha-bang" line at the beginning of your script, matches this same execution path.

UNIX (Module IV)

From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari Page 6 of 38

Steps in creating a Shell Script

1. Create a file using a vi editor(or any other editor). Name script file with extension
.sh

2. Start the script with #! /bin/sh
3. Write some code.
4. Save the script file as filename.sh
5. For executing the script type bash filename.sh

"#!" is an operator called shebang which directs the script to the interpreter location. So, if
we use"#! /bin/sh" the script gets directed to the bourne-shell.

Let's see the steps to create it -

Command 'ls' is executed when we execute the scrip sample.sh file.

Adding shell comments
Commenting is important in any program. In Shell programming, the

syntax to add a comment is
#comment
Let understand this with an example.

https://www.guru99.com/images/vi_scriptsample(2).png
https://www.guru99.com/images/adding_comment.png

UNIX (Module IV)

From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari Page 7 of 38

To compile and run the program

Chmod 777 filename.sh or ./filename.sh or bash filename.sh

Variable

Shell variable is a value, which changes during the execution of program. Shell
variables are created once they are assigned a value. A variable can contain a number, a
character or a string of characters. A variable is nothing more than a pointer to the actual
data. The shell enables you to create, assign, and delete variables.

System Defined Variables:

These are the variables which are created and maintained by Operating

System(Linux) itself. Generally these variables are defined in CAPITAL LETTERS. We

can see these variables by using the command “$ set“. Some of the system defined

variables are given below :

System Defined Variables Meaning

BASH=/bin/bash Shell Name

BASH_VERSION=4.1.2(1) Bash Version

COLUMNS=80 No. of columns for our screen

HOME=/home/linuxtechi Home Directory of the User

LINES=25 No. of columns for our screen

LOGNAME=LinuxTechi LinuxTechi Our logging name

OSTYPE=Linux OS type

PATH=/usr/bin:/sbin:/bin:/usr/sbin Path Settings

PS1=[\u@\h \W]\$ Prompt Settings

PWD=/home/linuxtechi Current Working Directory

SHELL=/bin/bash Shell Name

USERNAME=linuxtechi
User name who is currently login to

system

To Print the value of above variables, use echo command as shown below :

echo $HOME

echo $USERNAME

We can tap into these environment variables from within your scripts by using the

environment variable’s name preceded by a dollar sign. This is demonstrated in the

following script:

UNIX (Module IV)

From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari Page 8 of 38

$ cat myscript

#!/bin/bash

display user information from the system.

echo “User info for userid: $USER”

echo UID: $UID

echo HOME: $HOME

Notice that the environment variables in the echo commands are replaced by their

current values when the script is run. Also notice that we were able to place

the $USER system variable within the double quotation marks in the first string, and the

shell script was still able to figure out what we meant. There is a drawback to using this

method, however. Look at what happens in this example:

$ echo “The cost of the item is $15”

The cost of the item is 5

That is obviously not what was intended. Whenever the script sees a dollar sign

within quotes, it assumes you’re referencing a variable. In this example the script

attempted to display the variable $1 (which was not defined), and then the number 5. To

display an actual dollar sign, you must precede it with a backslash character:

$ echo “The cost of the item is \$15”

The cost of the item is $15

That’s better. The backslash allowed the shell script to interpret the dollar sign as an actual

dollar sign, and not a variable.

User Defined Variables:

These variables are defined by users. A shell script allows us to set and use our own

variables within the script. Setting variables allows you to temporarily store data and use

it throughout the script, making the shell script more like a real computer program.

User variables can be any text string of up to 20 letters, digits, or an underscore character.

Rules for declaring variables

 Variable name is case sensitive

 The name of a variable can contain only letters (a to z or A to Z), numbers (0 to 9)

or the underscore character (_).Value assignment is done using the "=" sign.

 Note that no space permitted on either side of = sign when initializing variables.

UNIX (Module IV)

From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari Page 9 of 38

Defining Variables

Variables are defined as follows −

variable_name=variable_value

Here are a few examples of assigning values to user variables:

var1=10
var2=-57
var3=testing
var4=“still more testing”

The shell script automatically determines the data type used for the variable value.
Variables defined within the shell script maintain their values throughout the life of the
shell script but are deleted when the shell script completes.

Accessing Values
To access the value stored in a variable, prefix its name with the dollar sign ($)−
For example, the following script will access the value of defined variable NAME

and print it on STDOUT −

#!/bin/bash

NAME="BCA VI SEM"
echo $NAME

The above script will produce the following value −

BCA VI SEM

Read-only Variables or Constants
Shell provides a way to mark variables as read-only by using the read-only

command. After a variable is marked read-only, its value cannot be changed.
For example, the following script generates an error while trying to change the

value of NAME −

#!/bin/sh

NAME="PEARLS"
readonly NAME
NAME="BCA VI SEM"

The above script will generate the following result −

/bin/sh: NAME: This variable is read only.

Unsetting Variables

Unsetting or deleting a variable directs the shell to remove the variable from the list of
variables that it tracks. Once you unset a variable, you cannot access the stored value in
the variable.

UNIX (Module IV)

From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari Page 10 of 38

Following is the syntax to unset a defined variable using the unset command −

unset variable_name

The above command unsets the value of a defined variable. Here is a simple example that
demonstrates how the command works −

#!/bin/sh

NAME="BCA VI SEM"
unset NAME
echo $NAME

The above example does not print anything. You cannot use the unset command
to unset variables that are marked readonly.

Variable Types

When a shell is running, three main types of variables are present −

 Local Variables − A local variable is a variable that is present within the current
instance of the shell. It is not available to programs that are started by the shell.
They are set at the command prompt.

 Environment Variables − An environment variable is available to any child
process of the shell. Some programs need environment variables in order to
function correctly. Usually, a shell script defines only those environment variables
that are needed by the programs that it runs.

 Shell Variables − A shell variable is a special variable that is set by the shell and is
required by the shell in order to function correctly. Some of these variables are
environment variables whereas others are local variables.

EXPR COMMAND
The expr command in UNIX evaluates a given expression and displays its

corresponding output. It is used for:
 Basic operations like addition, subtraction, multiplication, division, and modulus on integers.
 Evaluating regular expressions, string operations like substring, length of strings etc.

Syntax:

$expr expression

Options:

 Option –version : It is used to show the version information.
Syntax:
$expr --version

Example:

https://media.geeksforgeeks.org/wp-content/uploads/expr-1.png

UNIX (Module IV)

From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari Page 11 of 38

 Option –help : It is used to show the help message and exit.

Syntax:

$expr --help

Example:

Below are some examples to demonstrate the use of “expr” command:
1. Using expr for basic arithmetic operations :
Example: Addition
$expr 12 + 8

Example: Multiplication
$expr 12 * 2

Output

https://media.geeksforgeeks.org/wp-content/uploads/expr-2.png

UNIX (Module IV)

From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari Page 12 of 38

Note:The multiplication operator * must be escaped when used in an arithmetic expression
with expr.

2. Performing operations on variables inside a shell script
Example: Adding two numbers in a script
echo "Enter two numbers"

read x

read y

sum=expr $x + $y

echo "Sum = $sum"

Output:

Note: expr is an external program used by Bourne shell. It uses expr external program with
the help of backtick. The backtick(`) is actually called command substitution.

3. Comparing two expressions
Example:
x=10

y=20

matching numbers with '='

res=`expr $x = $y`

echo $res

displays 1 when arg1 is less than arg2

res=`expr $x \< $y`

echo $res
display 1 when arg1 is not equal to arg2
res=`expr $x \!= $y`
echo $res

Output:

UNIX (Module IV)

From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari Page 13 of 38

Example: Evaluating boolean expressions
OR operation

$expr length "geekss" "<" 5 "|" 19 - 6 ">" 10

Output:

AND operation

$expr length "geekss" "<" 5 "&" 19 - 6 ">" 10

Output:

4. For String operations
Example: Finding length of a string
x=geeks

len=`expr length $x`

echo $len

Output:

Example: Finding substring of a string
x=geeks

sub=`expr substr $x 2 3`

#extract 3 characters starting from index 2

echo $sub

UNIX (Module IV)

From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari Page 14 of 38

Output:

Example: Matching number of characters in two strings
$ expr geeks : geek

Output:

READ AND ECHO STATEMENTS OR COMMANDS
read is a built-in command of the Bash shell. It reads a line of text from standard

input and splits it into words. These words can then be used as the input for other
commands.

The built in command reads a line of input and separates the line into individual

words using the "IFS" inter field separator. (see IFS. By default, the "IFS" is set to a space.

Each word in the line is stored in a variable from left to right. The first word is stored in

the first variable, the second word to the second variable and so on. If there are fewer

variables than words, then all remaining words are then assigned to the last variable. If

you have more variables than words defined, then any excess variables are set to null. If

no variable names are supplied to the read line, then the read uses the default variable

REPLY.

read example

#!/bin/bash
echo "Please enter 3 words followed by ENTER:"
read first middle last
echo "Hello $first $middle $last"

Output from above read example

john@john-desktop:~/scripts$./read2.sh
Please enter 3 words followed by ENTER:
land of Unix
Hello land of Unix

We could also use the "-p" flag with the read command:

https://www.computerhope.com/jargon/b/builtin.htm
https://www.computerhope.com/unix/ubash.htm
https://www.computerhope.com/jargon/s/stdin.htm
https://www.computerhope.com/jargon/s/stdin.htm
https://landoflinux.com/linux_bash_scripting_variables.html

UNIX (Module IV)

From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari Page 15 of 38

read -p example

#!/bin/bash
read -p "Please Enter first word followed by ENTER: " first
read -p "Please Enter second word followed by ENTER: " middle
read -p "Please Enter last word followed by ENTER: " last
echo "Hello $first $middle $last"

Output from above read -p example

john@john-desktop:~/scripts$./read4.sh
Please Enter first word followed by ENTER: land
Please Enter second word followed by ENTER: of
Please Enter last word followed by ENTER: Unix
Hello land of Unix

Options available to the read command

Below is a table containing other parameters that may be used with the read built in in

command:

Option Description

-a ANAME Words are assigned sequentially to the array variable ANAME

-d DELIM The first character of DELIM us used to terminate the input line

-e readline is used to get line

-n
NCHARS

read returns after reading NCHARS

-p
PROMPT

Display PROMPT without a trailing newline. Prompt is only displayed if
coming from a terminal.

-r Backslash does not act as an escape character

-s Silent Mode. Characters are not echoed coming from a Terminal

-t
TIMEOUT

read will timeout after TIMEOUT seconds. Only from a Terminal

-u FD read input from Filed Descriptor FD

ECHO COMMAND OR STATEMENT
echo is a built-in command in the bash and C shells that writes

its arguments to standard output.

A shell is a program that provides the command line (i.e., the all-text display

user interface) on Linux and other Unix-like operating systems. It also executes (i.e., runs)

commands that are typed into it and displays the results. bash is the default shell on Linux.

http://www.linfo.org/command.html
http://www.linfo.org/shell.html
http://www.linfo.org/argument.html
http://www.linfo.org/standard_output.html
http://www.linfo.org/program.html
http://www.linfo.org/command_line.html
http://www.linfo.org/interface.html
http://www.linfo.org/linuxdef.html
http://www.linfo.org/unix-like.html
http://www.linfo.org/operating_systems_list.html

UNIX (Module IV)

From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari Page 16 of 38

A command is an instruction telling a computer to do something. An argument is

input data for a command. Standard output is the display screen by default, but it can

be redirected to a file, printer, etc.

The syntax for echo is

echo [option(s)] [string(s)]

The items in square brackets are optional. A string is any finite sequence of characters (i.e.,

letters, numerals, symbols and punctuation marks).

When used without any options or strings, echo returns a blank line on the display screen

followed by the command prompt on the subsequent line. This is because pressing the

ENTER key is a signal to the system to start a new line, and thus echo repeats this signal.

When one or more strings are provided as arguments, echo by default repeats those stings

on the screen. Thus, for example, typing in the following and pressing the ENTER key

would cause echo to repeat the phrase This is a pen. on the screen:

echo This is a pen.

It is not necessary to surround the strings with quotes, as it does not affect what is written

on the screen. If quotes (either single or double) are used, they are not repeated on the

screen.

Echo Options

These options may be specified before the string, and

affect the behavior of echo.

-n Do not output a trailing newline.

-e Enable interpretation of backslash escape

sequences (see below for a list of these).

-E Disable interpretation of backslash escape sequences. This is the default.

Options

If a long option is specified, you may not specify a string

to be echoed. These options are for getting information

about the program only.

--help Display a help message and exit.

--version Output version information and exit.

http://www.linfo.org/redirection.html
http://www.linfo.org/string.html
http://www.linfo.org/character.html
http://www.linfo.org/command_prompt.html
https://www.computerhope.com/jargon/n/newline.htm
https://www.computerhope.com/jargon/e/esc.htm
https://www.computerhope.com/jargon/e/esc.htm

UNIX (Module IV)

From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari Page 17 of 38

 Display a line of text on standard output.

echo Hello, World!

Hello, World!

 Display a line of text containing a double quote.

To print a double quote, enclose it within single quotes or escape it with the backslash
character.

echo 'Hello "Linuxize"'

echo "Hello \"Linuxize\""

Hello "Linuxize"

 Display a line of text containing a single quote.

To print a single quote, enclose it within double quotes or use the ANSI-C Quoting.

echo "I'm a Linux user."

echo $'I\'m a Linux user.'

I'm a Linux user.

 Display a message containing special characters.

Use the -e option to enable the interpretation of the escape characters.

echo -e "You know nothing, Jon Snow.\n\t- Ygritte"

You know nothing, Jon Snow.

 - Ygritte

 Pattern matching characters.

The echo command can be used with pattern matching characters, such as the wildcard

characters. For example, the command below will return the names of all the .php files in
the current directory.

echo The PHP files are: *.php

The PHP files are: index.php contact.php functions.php

 Redirect to a file

Instead of displaying the output on the screen, you can redirect it to a file using

the >, >> operators.

echo -e 'The only true wisdom is in knowing you know nothing.\nSocrates' >>

/tmp/file.txt

If the file.txt doesn’t exist, the command will create it. When using > the file will be

overwritten, while the >> will append the output to the file.

https://www.gnu.org/software/bash/manual/html_node/ANSI_002dC-Quoting.html
https://linuxize.com/post/bash-append-to-file/

UNIX (Module IV)

From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari Page 18 of 38

Use the cat command to view the content of the file:

cat /tmp/file.txt

The only true wisdom is in knowing you know nothing.

Socrates

 Displaying variables

echo can also display variables. In the following example, we’ll print the name of the

currently logged in user:

echo $USER

linuxize

$USER is a shell variable that holds your username.

 Displaying output of a command

Use the $(command) expression to include the command output in the echo's argument.

The following command will display the current date:

echo "The date is: $(date +%D)"

The date is: 04/17/19

 Displaying in color

Use ANSI escape sequences to change the foreground and background colors or set text

properties like underscore and bold.

echo -e "\033[1;37mWHITE"

echo -e "\033[0;30mBLACK"

echo -e "\033[0;34mBLUE"

echo -e "\033[0;32mGREEN"

echo -e "\033[0;36mCYAN"

echo -e "\033[0;31mRED"

echo -e "\033[0;35mPURPLE"

echo -e "\033[0;33mYELLOW"

echo -e "\033[1;30mGRAY"

https://linuxize.com/post/linux-cat-command/
https://linuxize.com/post/how-to-set-and-list-environment-variables-in-linux/
https://linuxize.com/post/linux-date-command/
https://en.wikipedia.org/wiki/ANSI_escape_code#Colors

UNIX (Module IV)

From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari Page 19 of 38

Escape Sequences

echo recognizes a number of escape sequences which it expands internally. An escape

command is a backslash-escaped character that signifies some other character. The ones

recognized by echo are common throughout the shell syntax, as follows:

If the -e option is given, the following backslash-escaped characters will be interpreted:

\\ Displays a backslash character.

\a Alert (BEL)

\b Displays a backspace character.

\c Suppress any further output

\e Displays an escape character.

\f Displays a form feed character.

\n Displays a new line.

\r Displays a carriage return.

\t Displays a horizontal tab.

\v Displays a vertical tab.

 The -E option disables the interpretation of the escape characters. This is the default.

COMMAND SUBSTITUTION

Command substitution is the mechanism by which the shell performs a given set of
commands and then substitutes their output in the place of the commands.

Syntax

The command substitution is performed when a command is given as −

$(command)

When performing the command substitution make sure that you use the $, with
parenthesis ().

Example

Command substitution is generally used to assign the output of a command to a variable.
Each of the following examples demonstrates the command substitution −

#!/bin/sh
DATE=$(date)
echo "Date is $DATE"
USERS=$(who | wc –l)
echo "Logged in user are $USERS"

Upon execution, you will receive the following result −

Date is Thu Jul 2 03:59:57 IST 2020
Logged in user are 1
Uptime is Thu Jul 2 03:59:57 IST 2020
03:59:57 up 20 days, 14:03, 1 user, load avg: 0.13, 0.07, 0.15

UNIX (Module IV)

From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari Page 20 of 38

SHELL SCRIPT ARGUMENTS AND POSITIONAL PARAMETERS

A bash shell script have parameters. These parameters start from $1 to $9.

When we pass arguments into the command line interface, a positional parameter is
assigned to these arguments through the shell.

The first argument is assigned as $1, second argument is assigned as $2 and so on...

If there are more than 9 arguments, then tenth or onwards arguments can't be assigned as
$10 or $11.

You have to either process or save the $1 parameter, then with the help of shift command
drop parameter 1 and move all other arguments down by one. It will make $10 as $9, $9 as

$8 and so on.

Shell Parameters

Parameters Function

$1-$9 Represent positional parameters for arguments one to nine

${10}-${n} Represent positional parameters for arguments after nine

$0 Represent name of the script

$∗ Represent all the arguments as a single string

$@ Same as $∗, but differ when enclosed in (")

$# Represent total number of arguments

$$ PID of the script

$? Represent last return code

Example:

UNIX (Module IV)

From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari Page 21 of 38

Look at the above snapshot, this is the script we have written to show the different
parameters.

Look at the above snapshot, we have passed arguments 1, 5, 90. All the parameters show
their value when script is run.

TEST Command

 On Unix-like operating systems, test is a builtin command of the Bash shell that
can test file attributes, and perform string and arithmetic comparisons.

test is used as part of the conditional execution of shell commands. test exits with the

status determined by EXPRESSION. Placing the EXPRESSION between square brackets

([and]) is the same as testing the EXPRESSION with test. To see the exit status at the

command prompt, echo the value "$?" A value of 0 means the expression evaluated as true,

and a value of 1 means the expression evaluated as false. test provides no output, but

returns an exit status of 0 for "true" (test successful) and 1 for "false" (test failed).

The test command is frequently used as part of a conditional expression. For instance, the
following statement says, "If 4 is greater than 5, output yes, otherwise output no."

num=4;
if (test $num -gt 5); then
echo "yes";
else
echo "no"; fi

no

The following statement says, "If 6 is greater than 5, output yes, otherwise output no."

num=6;
if (test $num -gt 5); then
echo "yes";
else
echo "no"; fi

yes

https://www.computerhope.com/jargon/u/unix-like.htm
https://www.computerhope.com/jargon/b/builtin.htm
https://www.computerhope.com/unix/ubash.htm
https://www.computerhope.com/jargon/f/fileattr.htm
https://www.computerhope.com/jargon/s/string.htm
https://www.computerhope.com/jargon/c/contstat.htm
https://www.computerhope.com/jargon/s/shell.htm
https://www.computerhope.com/unix/uecho.htm
https://www.computerhope.com/jargon/o/output.htm
https://www.computerhope.com/jargon/e/exit-status.htm
https://www.computerhope.com/jargon/c/contstat.htm
https://www.computerhope.com/jargon/e/expressi.htm

UNIX (Module IV)

From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari Page 22 of 38

The test command may also be expressed with single brackets [...], as long as they are
separated from all other arguments with whitespace. For example, the following statement
checks that the system file /etc/passwd exists, and if not, outputs "uh-oh."

file="/etc/passwd";
if [-e $file]; then
echo "whew";
else echo "uh-oh";
fi

whew

Syntax

File tests:

test [-a] [-b] [-c] [-d] [-e] [-f] [-g] [-h] [-L] [-k] [-p] [-r] [-s] [-S] [-u] [-w] [-x] [-O] [-G] [-N]

[file]

test -t fd

test file1 {-nt | -ot | -ef} file2

String tests:

test [-n | -z] string

test string1 {= | != | < | >} string2

Shell options and variables:

test -o option

test {-v | -R} var

Simple logic (test if values are null):

test [!] expr

test expr1 {-a | -o} expr2

Numerical comparison (for integer values only; bash doesn't do floating point math):

test arg1 {-eq | -ne | -lt | -le | -gt | -ge} arg2

https://www.computerhope.com/jargon/w/whitspac.htm
https://www.computerhope.com/jargon/n/null.htm
https://www.computerhope.com/jargon/i/integer.htm
https://www.computerhope.com/jargon/f/floapoin.htm

UNIX (Module IV)

From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari Page 23 of 38

Test command Options

The test builtin command takes the following options.

-a file
Returns true if file exists. Does the same thing as -e. Both are included for

compatibility reasons with legacy versions of Unix.

-b file

Returns true if file is "block-special". Block-special files are similar to

regular files, but are stored on block devices — special areas on

the storage device that are written or read one block (sector) at a time.

-c file

Returns true if file is "character-special." Character-special files are

written or read byte-by-byte (one character at a time), immediately, to a

special device. For example, /dev/urandom is a character-special file.

-d file Returns true if file is a directory.

-e file
Returns true if file exists. Does the same thing as -a. Both are included for

compatibility reasons with legacy versions of Unix.

-f file Returns true if file exists, and is a regular file.

-r file Returns true if file is readable by the user running test.

-s file Returns true if file exists, and is not empty.

-w file
Returns true if the user running test has write permission to file, i.e.

make changes to it.

-x file Returns true if file is executable by the user running test.

-O file Returns true if file is owned by the user running test.

-G file Returns true if file is owned by the group of the user running test.

-N file Returns true if file was modified since the last time it was read.

file1 -nt file2
Returns true if file1 is newer (has a newer modification date/time)

than file2.

file1 -ot file2
Returns true if file1 is older (has an older modification date/time)

than file2.

file1 -ef file2 Returns true if file1 is a hard link to file2.

test [-n] string

Returns true if string is not empty. Operates the same with or without -n.

For example, if mystr="", then test "$mystr" and test -n "$mystr" would

both be false. If mystr="Not empty", then test "$mystr" and test -n

"$mystr" would both be true.

-z string Returns true if string string is empty, i.e. "".

string1 = string2
Returns true if string1 and string2 are equal, i.e. contain the same

characters.

https://www.computerhope.com/jargon/u/unix.htm
https://www.computerhope.com/jargon/s/stordevi.htm
https://www.computerhope.com/jargon/b/block.htm
https://www.computerhope.com/jargon/s/sector.htm
https://www.computerhope.com/jargon/b/byte.htm
https://www.computerhope.com/jargon/c/charact.htm
https://www.computerhope.com/jargon/d/director.htm
https://www.computerhope.com/jargon/w/write.htm
https://www.computerhope.com/jargon/p/permissi.htm
https://www.computerhope.com/jargon/e/execfile.htm
https://www.computerhope.com/jargon/o/owner.htm
https://www.computerhope.com/jargon/m/modify.htm
https://www.computerhope.com/unix/utouch.htm#what-is-a-timestamp
https://www.computerhope.com/unix/uln.htm#links-explained
https://www.computerhope.com/jargon/s/string.htm

UNIX (Module IV)

From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari Page 24 of 38

string1 != string2 Returns true if string1 and string2 are not equal.

string1 < string2

Returns true if string1 sorts before string2 lexicographically, according

to ASCII numbering, based on the first character of the string. For

instance, test "Apple" < "Banana" is true, but test "Apple" < "banana" is

false, because all lowercase letters have a lower ASCII number than their

uppercase counterparts.

Tip: Enclose any variable names in double quotes to protect whitespace.

Also, escape the less than symbol with a backslash to prevent bash from

interpreting it as a redirection operator. For instance, use test "$str1" \<

"$str2" instead of test $str1 < $str2. The latter command will try to read

from a file whose name is the value of variable str2. For more

information, see redirection in bash.

string1 > string2

Returns true if string1 sorts after string2 lexicographically, according to

the ASCII numbering. As noted above, use test "$str1" \> "$str2" instead

of test $str1 > $str2. The latter command creates or overwrites a file

whose name is the value of variable str2.

-v var Returns true if the shell variable var is set.

-R var

Returns true if the shell variable var is set, and is a name reference. (It's

possible this refers to an indirect reference, as described in Parameter

expansion in bash.)

! expr Returns true if and only if the expression expr is null.

expr1 -a expr2 Returns true if expressions expr1 and expr2 are both not null.

expr1 -o expr2 Returns true if either of the expressions expr1 or expr2 are not null.

arg1 -eq arg2 true if argument arg1 equals arg2.

arg1 -ne arg2 true if argument arg1 is not equal to arg2.

arg1 -lt arg2 true if numeric value arg1 is less than arg2.

arg1 -le arg2 true if numeric value arg1 is less than or equal to arg2.

arg1 -gt arg2 true if numeric value arg1 is greater than arg2.

arg1 -ge arg2 true if numeric value arg1 is greater than or equal to arg2

https://www.computerhope.com/jargon/a/ascii.htm
https://www.computerhope.com/jargon/l/lowercas.htm
https://www.computerhope.com/jargon/e/esc.htm#escape-char
https://www.computerhope.com/jargon/b/backslash.htm
https://www.computerhope.com/jargon/r/redirect.htm
https://www.computerhope.com/unix/ubash.htm#redirection
https://www.computerhope.com/unix/ubash.htm#parameters
https://www.computerhope.com/unix/uset.htm
https://www.computerhope.com/unix/ubash.htm#parameter-expansion
https://www.computerhope.com/unix/ubash.htm#parameter-expansion
https://www.computerhope.com/jargon/a/argument.htm

UNIX (Module IV)

From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari Page 25 of 38

CONDITIONAL CONTROL STRUCTURES OR DECISION MAKING OR
BRANCHING

Most of our programming languages today are able to make decisions based on
conditions we set. A condition is an expression that evaluates to a Boolean value - true or
false. Any programmer can make his program smart based on the decision and logic he
puts into his program. The bash shell supports if and switch (case) decision statements.

If statement

If is a statement that allows the programmer to make a decision in the program based on
conditions he specified. If the condition is met, the program will execute certain lines of
code otherwise, the program will execute other tasks the programmer specified. The
following is the supported syntax of the if statement in the bash shell.

#1) The if statements

Simple if is used for decision making in shell script. if the given condition is true
then it will execute the set of code that you have allocated to that block.

Syntax
if [condition]
then
Execute the statements
fi

#1) Check if an input number is positive:
 echo “Enter a number”
 read num
 if [$num -gt 0]
 then
 echo “It is a positive number”
 fi

#2) The if…else statements

if..else is used for decision making in shell script where the given condition is true
then it will execute the set of code that you have allocated to that block otherwise you can
execute the rest of code for the false condition.

Syntax
if [condition]
then
Execute Statement if Condition is True
elif
Execute Statement if Condition is False
fi

UNIX (Module IV)

From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari Page 26 of 38

#2) Check if an input number is positive or not:
 echo “Enter a number”
 read num
 if [$num -gt 0]
 then
 echo “It is a positive number”
 else
 echo “It is not a positive integer”
 fi

#3) The if…elif…else…fi statement
 It is possible to create compound conditional statements by using one or more else
if (elif) clause. if the 1st condition is false, then subsequent elif statements are checked.
When an elif condition is found to be true, the statements following that associated parts
are executed.

Syntax
if [condition]
then
Execute Statement if Condition 1
elif [condition]
Execute Statement if Condition 2
elif [condition]
Execute Statement if Condition 3
elif
Else Condition
fi

#3) Check if an input number is positive, zero or negative:
 echo “Enter a number”
 read num
 if [$num -gt 0]
 then
 echo “It is a positive number”
 elif [$num -eq 0]
 then
 echo “num is equal to zero”
 else
 echo “It is not a positive integer”
 fi

#4) Nested if
 if statement and else statement can be nested in bash shell programming.The
keyword "fi" indicates the end of the inner if statement and all if statement should end with
"fi".

UNIX (Module IV)

From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari Page 27 of 38

Syntax

if [condition]
then
if [condition]
then
Execute Statement
elif
Execute Statement
fi
elif
Execute Statement
fi

#4) Nested if Example
echo "Enter Your Country:"
read cn
if [$cn -eq 'BHARATH']
then
echo "Enter Your State:"
read st
if [$st -gt 'Karnataka']
then
echo "Welcome to Karnataka"
elif
echo "You are Not Kannadiga"
fi
elif
echo "Other Country"
fi

The Shell Switch Case

The case statement is good alternative to multilevel if then else fi statement.it
enables you to match several values against one variable. It’s easier to read and write
multiple conditions.

Syntax
case $[variable_name] in
value1)
Statement 1
;;
value2)
Statement 2
;;
value3)
Statement 3
;;
value4)
Statement 4
;;

UNIX (Module IV)

From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari Page 28 of 38

valueN)
Statement N
;;
*)
Default Statement
;;
esac

Here, the value of the word expression is matched against each of the choice
patterns. If a match is found then the corresponding statements are executed until the ‘;;’
statement is encountered. If there is no match, the default statements under ‘*)’ are
executed.

The following is an Example of a switch case program:
 echo “Enter a number”
 read num
 case $num in
 [0-9])
 echo “you have entered a single digit number”
 ;;
 [1-9][1-9])
 echo “you have entered a two-digit number”
 ;;
 [1-9][1-9][1-9])
 echo “you have entered a three-digit number”
 ;;
 *)
 echo “your entry does not match any of the conditions”
 ;;
 esac

LOOPING OR ITERATIVE OR REPITITIVE STATEMENTS
 A loop is a powerful programming tool that enables you to execute a set of

commands repeatedly. Loops are required whenever a set of statement must be

executed repeatedly. The repeated execution also need decision making to terminate

the loop.

• The three types of looping are

– until loop

– while loop

– for loop

Until Loop

The until statement executes every command inside the loop until the Boolean

expression declared results to false. It is the complete opposite of the while statement. The

until loop is useful when you need to execute a set of commands until a condition is true.

UNIX (Module IV)

From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari Page 29 of 38

Syntax

until [condition]

do

 statement 1

 statement 2

done

Example

i=1

while [!$i -lt 10]

do

 echo $i

 i=`expr $i + 1`

done

While Loop

The while loop enables you to execute set of commands repeatedly until some

condition occurs.it usually used when you need to manipulate the value of a variable

repeatedly. the while repetitive control structure separates the initialization, Boolean test

and the increment/decrement statement.

Syntax

while [condition]

do

 statement 1

 statement 2

done

Example

i = 1

while [$i -le 10]

do

 echo $i

 i = `expr $i + 1`

done

UNIX (Module IV)

From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari Page 30 of 38

For Loop

A for loop is a bash programming language statement which allows code to be

repeatedly executed. The for loop is a looping statement that uses the keyword for to

declare a repetitive statement. The bash supports different syntaxes for the for loop

statement:

Syntax

for [variable_name] in ...

do

 statement 1

 statement 2

 statement n

done

This syntax starts with the keyword for, then followed by a variable name, the

keyword in and the list of possible values for the variable. Each value in the list will be

separated with a space and the start of the code lines that will be repeated is defined in

the do and ends with a done keyword.

Example

for no in {1..10}

do

 echo $no

done

JUMPING CONTROLS
Most of the time your loops are going to through in a smooth and orderly manner.

Sometimes however we may need to intervene and alter their running slightly. There are
two statements we may issue to do this.

Break

The break statement tells Bash to leave the loop straight away. It may be that there

is a normal situation that should cause the loop to end but there are also exceptional

situations in which it should end as well. For instance, maybe we are copying files but if

the free disk space gets below a certain level, we should stop copying.

for value in $1/*
do
used=$(df $1 | tail -1 | awk '{ print $5 }' | sed 's/%//')
if [$used -gt 90]
then
echo Low disk space 1>&2
break
fi

UNIX (Module IV)

From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari Page 31 of 38

cp $value $1/backup/
done

Continue

The continue statement tells Bash to stop running through this iteration of the loop

and begin the next iteration. Sometimes there are circumstances that stop us from going

any further. For instance, maybe we are using the loop to process a series of files but if we

happen upon a file which we don't have the read permission for we should not try to

process it.

#!/bin/bash

Make a backup set of files

for value in $1/*

do

if [! -r $value]

then

echo $value not readable 1>&2

continue

fi

cp $value $1/backup/

done

Exit

The exit command terminates a script, just as in a C program. It can also return a

value, which is available to the script's parent process.

Every command returns an exit status (sometimes referred to as a return
status or exit code). A successful command returns a 0, while an unsuccessful one returns
a non-zero value that usually can be interpreted as an error code. Well-behaved UNIX
commands, programs, and utilities return a 0 exit code upon successful completion,
though there are some exceptions.

Likewise, functions within a script and the script itself return an exit status. The last
command executed in the function or script determines the exit status. Within a script,
an exit nnn command may be used to deliver an nnn exit status to the shell (nnn must be
an integer in the 0 - 255 range).

When a script ends with an exit that has no parameter, the exit status of the script is the
exit status of the last command executed in the script (previous to the exit).

#!/bin/bash
COMMAND_1
. . .
COMMAND_LAST
Will exit with status of last command.
Exit

https://www.tldp.org/LDP/abs/html/functions.html#FUNCTIONREF

UNIX (Module IV)

From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari Page 32 of 38

The equivalent of a bare exit is exit $? or even just omitting the exit.

#!/bin/bash
COMMAND_1
. . .
COMMAND_LAST
Will exit with status of last command.
exit $?

#!/bin/bash
COMMAND1
. . .
COMMAND_LAST
Will exit with status of last command.

$? reads the exit status of the last command executed. After a function returns, $? gives the
exit status of the last command executed in the function. This is Bash's way of giving
functions a "return value."

Following the execution of a pipe, a $? gives the exit status of the last command executed.

After a script terminates, a $? from the command-line gives the exit status of the script,
that is, the last command executed in the script, which is, by convention, 0 on success or
an integer in the range 1 - 255 on error.

UNIX SYSTEM COMMUNCATION
When you work in a distributed environment, you need to communicate with

remote users and you need to access remote UNIX machines. A network lets two or more

computers communicate and work together. Partly because of its open design, UNIX has

been one of the operating systems where a lot of networking development is done. Just as

there are different versions of UNIX, there are different ways and programs to use

networks from UNIX.

There are several UNIX utilities that help users compute in a networked, distributed

environment.

The Internet

A worldwide network of computers. Internet users can transfer files, log into other

computers, and use a wide range of programs and services.

WWW

The World Wide Web is a fast-growing set of information servers on the Internet.

The servers are linked into a hypertext web of documents, graphics, sound, and more.

Point-and-click browser programs turn that hypertext into an easy-to-use Internet

interface.

Mail

A UNIX program that has been around for years, long before networking was

common, is mail. It sends electronic memos, usually called email messages, between a user

and one or more other users. When you send email, your message waits for the other

https://www.tldp.org/LDP/abs/html/special-chars.html#PIPEREF

UNIX (Module IV)

From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari Page 33 of 38

user(s) to start their own mail program. The people who get your message can file it, print

it, reply to it, forward it to other people, and much more. System programs can send you

mail to tell you about problems or give you information. You can send mail to programs,

to ask them for information. Worldwide mailing lists connect users into discussion groups.

There is more, of course. There are zillions of mail programs for UNIX-some

standard, some from vendors, and many freely available. The more common email

programs include mailx , Pine , mush , elm , and MH (a package made up of many utilties

including comp , inc , show , and so on). Find one that is right for you and use it!

ftp

The ftp program is one way to transfer files between your computer and another

computer with TCP/IP, often over the Internet network. ftp requires a username and

password on the remote computer. Anonymous ftp (52.7) uses the ftp program and a

special restricted account named anonymous on the remote computer. It's usually used for

transferring freely available files and programs from central sites to users at many other

computers.

UUCP

UNIX-to-UNIX Copy is a family of programs (uucp (52.7) , uux , uulog , and

others) for transferring files and email between computers. UUCP is usually used with

modems over telephone lines.

Usenet

Usenet isn't exactly a network. It's a collection of thousands of computers

worldwide that exchange files called news articles . This "net news" system has hundreds

of interactive discussion groups, electronic bulletin boards, for discussing everything from

technical topics to erotic art.

telnet

This utility logs you into a remote computer over a network (such as the Internet)

using TCP/IP. You can work on the remote computer as if it were your local computer.

The telnet program is available on many operating systems; telnet can log you into other

operating systems from your UNIX host and vice versa. A special version of telnet called

tn3270 will log into IBM mainframes.

rlogin

Similar to telnet but mostly used between UNIX systems. Special setups, including

a file named .rhosts in your remote home directory, let you log into the remote computer

without typing your password.

rcp

A " remote cp " program for copying files between computers. It has the same

command-line syntax as cp except that hostnames are added to the remote pathnames.

UNIX (Module IV)

From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari Page 34 of 38

rsh

Starts a " remote shell" to run a command on a remote system without needing to

log in interactively.

NFS

NFS is not a user utility. The Network File System and related packages like NIS

(the Network Information Service) let your system administrator mount remote

computers' file systems onto your local computer. You can use the remote file system as

easily as if it were on your local computer.

Write

Sends messages to another user's screen. Two users can have a discussion with

write.

talk

A more sophisticated program than write, talk splits the screen into two pieces and

lets users type at the same time if they want to. Talk can be used over networks, though

not all versions of talk can talk to one another.

Elements of a communication process
1. Sender
2. Receiver
3. Message
4. Channel

The mesg command

 UNIX facilitates users to other user’s terminals who are logged in.

 This is possible only when the other terminal has given write permission.

 The mesg command is used to change the write permission of a user.

Options:
• y for yes
• n for no

COMMUNICATOR

[SENDER]

OR

[RECEIVER]

COMMUNICATOR

[RECEIVER]

OR

[SENDER]

CHANNEL

MESSAGE

UNIX (Module IV)

From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari Page 35 of 38

 Example:
• $mesg y #grants write permission

• $mesg n #denies write permission

• $mesg is n #displays the current status of write permission of the terminal.

Write
It is possible to send messages several ways in UNIX. Allows a two-way

communication two users who are currently logged in and who have given write

permission. To send a message directly to another user who is logged on, enter the

command:

write user_name

This starts a process that will write text to the other user's screen. Every line you enter will

be sent to the other user, until you press ctrl-d to end the process. The other user can initiate

a write command to reply to you, even while yours is still going on. This could be done

immediately to notify the sender that you do not want to talk now.

If you don't want to be interrupted at all by messages, you can use the mesg command the

letter n as an argument (mesg n) to turn off message reception. Using y as an argument

will turn message reception back on.

Example:

$write MAAS

Going on a tour? Happy journey.

-BCA

<ctrl d> #indicates end of message

Message from BCA@MAAS 14:43……… on pts/2 at

Going on a tour? Happy journey.

BCA

EOF

 Conversation continues until users decide to end it.

 Both users must be logged in else error message will appear.

The finger command

 Similar to who command.

 It lists the details of users who have logged in and given permission to accept

messages.

Example:

$finger

Login Name Tty Idle Login time office office ph.

UNIX (Module IV)

From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari Page 36 of 38

Rama rama pts/1 feb28 13:57

Uma uma.k pts/2 feb 28 14:21

In this example
• Login shows login name of users

• Name shows full name of the users

• Tty shows device number of the terminals

• Idle shows idle time since user logged in

• Login time shows the time of logging in of the users.

• Office and office ph -> shows the address and phone number of the user.

News command

The news command will read and display files that are placed in the /usr/news

directory. This is another way for system operators to communicate information to you,

and for users to communicate lengthy messages to all people who might want to read

them. Options allow the user to specify what they want:

 -n lists new files in the news directory

 -a displays all files in the news directory

 -s counts the number of new files

 no option: displays only files that are new since you last ran the command

wall command

The wall command means to write all, or to use the write command to all current users on
the system. This command is very intrusive by nature and should not be used for trivial
messages. It is immediate, and like write, it breaks into a user's current session. The
command has some limitations. It will not be received by users who have message
reception turned off. Also, it may not be accessible by anyone but the system administrator.
If the idea of irritating all users does not bother you, you should know that the message is
still tagged with your user name.

 This command can be used only by super user.

 Used to send message to all users on the system , known as broadcasting message to
all users irrespective of whether user given write permission or not.

 Wall executable file is stored in /etc directory.

Example:
$wall #message send by super user
There may be power failure.
Please save your files.
<ctrl d>

Broadcast message from root (pts/3) (sat09 14:37:28 2016): #DISPLAYED ON ALL
LOGGED IN USERS.
There may be power failure.
Please save your files.

UNIX (Module IV)

From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari Page 37 of 38

Electronic mail
Sending and receiving messages using computer and communication tools is

known as Electronic Mail. A more flexible and useful messaging process is e-mail, or

electronic mail. E-mail can be sent to any number of users, it is not intrusive and the user

need not be logged on at the time it is sent in order to see it later. While most environments

now use third-party e-mail systems, you should be aware that there are e-mail functions

built into UNIX.

Sending mail
o The mail command is the basic e-mail program.
o Contains text editor to compose mail.
o Used to send and receive mails.

Depending on the system you use, either the mail or the mailx command may be available

to you.

To use either e-mail command, you must have a mailbox on the system. This is a file that

will hold your e-mail messages. This is your system mailbox. You can read mail in it with

the mailx command, which will put a copy of that mail in a file called mbox, unless you

save it elsewhere or exit mailx with the x command.

Like a lot of UNIX, you can save customized settings for your e-mail

environment. mailx will look for these settings in a file called .mailrc in your home

directory. This will override the general settings found in the mail.rc file.

Like using write, you can begin the mailx command by typing:

Syntax:

$mail <options> addresses

message text

Example:

$mail user1 user2

Subject : seminar

…………………………

BCA<ctrl d>

 User1 and user2 are login names.

 If the receiver is not busy running a program, the following message will be displayed

on his screen.

 You have new mail.

 If the user is not logged in when mail is sent to him/her, the message is displayed as

you have mail.

UNIX (Module IV)

From the desk of Mr. Manjunatha Balluli, Shree Medha College, Ballari Page 38 of 38

This will begin a process that expects you to type a message to the named user. You end

the message by entering ctrl-d, as the end of file marker. The message is then transmitted

to the user's mail box.

Mail can be read by entering the mailx command with no argument. Your queue of

messages will be displayed, and you can read a message by entering the message number

displayed for it. When you wish to see the next message, enter its message number.

Entering q will quit the mailx program and save messages you have read as noted above.

Entering x will quit without saving opened mail to the mbox.

The mailx program has several commands available to the user in the input mode. Just to

be different, these commands all start with a tilde. These commands are not mnemonic,

and should be practiced to gain familiarity with them. We will do this in class.

Receiving a mail

• The mail command without argument is used to receive mails.

• Example:

$mail

Mail version………

“/var/spool/mail/rama”:2messages 1 new 1

1. <uma> mon mar 03 10:40 labs>N

2.<std1> mon mar 04 12:32 projects &

 Received mails of a user are stored in a mailbox.

 Name of this will be his/her login name.

 Mailbox is found in /var/spool/mail directory.

 First line displays version of mail program

 Second line gives a summary of messages, with their status such as unread and new

also indicates mail directory used and number of messages in it.

 Next list of mails are shown.

 First character on each line on gives status of each mail. Like new (N), unread (U), (>)

character indicates that message as current message.

 The “& “ character in the list line is the mail prompt

 Actions like reading, saving, deleting, forwarding and quitting the mail program.

 Personal mailbox called ‘mbox’ is located in user’s directory.

 Any messages not deleted but read, will be saved in this file when user quits mail

program.

