
 
Functions 

 

SSASGFG College, Hospatte Page 1 
 

Introduction 

 

 The most of the general problems cannot be solved by using small programs, for that 

one has to write a big computer program. Large programs are difficult to handle and 

manage. Large programs can be made manageable by dividing it into smaller programs or 

modules is called modularization. Programming with such an approach is called modular 

programming. These subprograms are called as functions. 

 

C functions   

C functions are divided into following types: 

✓ Built-in Library functions. 

✓ User defined functions. 

Library functions are available through libraries that are provided by the C compiler 

developers. 

Example: 

sqrt(), pow(), strcmp(), strcat(), strcpy(), strlwr(), strupr(), strlen(), abs(), fabs(), cos()…etc. 

 

C allows users to create their own functions or subprograms called user defined functions. 

 

Need for user defined functions (purposes) 

✓ Repetition If a portion of the program is to be repeated in a number of places in the 

program, then a function may be used to avoid rewriting the sequence of code in 

two or more locations in the program. 

✓ Universal use Same task might be needed in more than one program or a large 

group of programmers may need the same task. By writing a function and making it 

available to others the duplication of effort can be avoided.  

✓ Modularity A program for complex problems can be developed in a modular fashion 

by dividing the program into modules or functions, each function performing definite 

tasks. Since these functions are independent of each other they can be tested 

independently without affecting other module. 

✓ Teamwork If a program is divided into subprograms, a number of members form a 

team and each person in the team can develop a separate subprogram, rather than 

having a single person work on the complete program. 

✓ Debugging easy Debugging becomes easier as the program is divided into a number 

of functions. 

 

Function Definition 

 A function is a self contained block of statements that perform a specific task. After 

processing a function returns a single value or null value. 

Advantages of functions 



 
Functions 

 

SSASGFG College, Hospatte Page 2 
 

✓ Updating and modification can be made very easy. 

✓ Coding is reduced. 

✓ Looping is reduced. 

✓ Debugging is easy. 

✓ Subprogram can be executed many times as per requirement. 

 

Structure of C Function 

Structure of C Function is as follows: 

return_type_specifier function_name(argument_list) 

       { 

body of the function; 

return(expression); 

       } 

where, 

return_type_specifier  

It specifes the type of value which will be return by the function after execution. It 

may be of type int, float, double and char. The data type void is used if the function does not 

return any value. 

function_name 

A name of the function. It is declared according the rules of declaring a variable.  

argument_list 

  the argument list shows the pair of data-type and variable_name which are passed 

to the function. If more then variable are passed they are separated by commas. 

Body_of_the_function  

It will be having the declaration of Local_variables, and statements (input, ouput, 

computations)  

return_type(expression) 

The expression will yield a single value which will be returned to function, which as 

invoked it. It will be not present if the function is not returning any value. 

 

Write a C program to find the sum of given two numbers using function. 

#include<stdio.h> 

#include<conio.h> 

int sum(int, int); 

void main( ) 

{ 

int a,b,c; 

clrscr( ); 

printf(“\n enter two numbers  \n”);  

scanf(“%d%d”,&a,&b); 



 
Functions 

 

SSASGFG College, Hospatte Page 3 
 

c=sum(a,b); 

printf(“\n the sum is %d  “,c); 

getch(); 

} 

 

int sum(int m,int n) 

{ 

int res; 

res=m+n; 

return(res); 

}  

Output: 

enter two numbers  

5 

10 

the sum is 15 

 

Function Call 

 To execute a function we will have to call the function. When the function is called 

values are passed to the functions through the use of actual parameters or arguments. 

The general form is: 

variable=function_name(arg1,arg2,………); 

OR 

Function_name(arg1,arg2,………); 

 

Actual and Formal Arguments (Parameters) 

Actual arguments: The arguments appearing in the function call are known as actual 

arguments. 

Formal arguments: The arguments appearing in the function header are known as formal 

arguments. 

Example: 

#include<stdio.h> 

#include<conio.h> 

int sum(int, int); 

void main( ) 

{ 

int a,b,c; 

clrscr( ); 

printf(“\n enter two numbers  \n”);  

scanf(“%d%d”,&a,&b); 



 
Functions 

 

SSASGFG College, Hospatte Page 4 
 

c=sum(a,b); 

printf(“\n the sum is %d  “,c); 

getch(); 

} 

 

int sum(int m,int n) 

{ 

int res; 

res=m+n; 

return(res); 

}  

Here a & b are actual arguments. 

m & n are formal arguments. 

 

Local & Global Variables 

Variables declared inside a block or function are said to belong only to that block and 

are referred as Local Variables. They can be accessed in the block but not outside of the 

block. 

Variables declared before main function block are referred as Global Variables. They 

can be accessed throughout the program. i.e in all the blocks of the program. 

Example: 

sub(int p, int q) 

{ 

Int a,b; 

------------------------------------ 

------------------------------------ 

} 

Here a & b are local variables. 

 

int p, q; 

main( ) 

{ 

int a,b; 

------------------------------------ 

------------------------------------ 

} 

Here p & q are global variables. 

Here a & b are local variables. 

 

 



 
Functions 

 

SSASGFG College, Hospatte Page 5 
 

Types of Functions (categories of functions) 

✓ Function with no arguments and no return values. 

✓ Function with arguments and no return values. 

✓ Function with arguments and with return values. 

✓ Recursive Functions. 

 

Function with no arguments and no return values. 

 In this type of function the first function calls the second functions, but no 

arguments are passed to second function. The second function performs its calculations but 

no value is sent back to the first function. 

The syntax is: 

 

Write a C program to illustrate function with no arguments and no return value. 

#include<stdio.h> 

#include<conio.h> 

void sum( ); 

void main( ) 

{ 

clrscr( ); 

sum( ); 

getch(); 

} 

 

void sum( ) 

{ 

int a,b,c; 

printf(“\n enter two numbers  \n”);  

scanf(“%d%d”,&a,&b); 

c=a+b; 

printf(“\n the sum is %d  “,c); 

}  

Output: 

enter two numbers  

5 

10 

the sum is 15 

 

 

 

 



 
Functions 

 

SSASGFG College, Hospatte Page 6 
 

Function with arguments and no return values. 

 In this type of function the first function calls the second functions, by passing one or 

more arguments to second function. The second function performs its calculations but no 

value is sent back to the first function. 

The syntax is: 

 

Write a C program to illustrate function with arguments and no return value. 

#include<stdio.h> 

#include<conio.h> 

void sum(int, int ); 

void main( ) 

{ 

int a,b; 

clrscr( ); 

printf(“\n enter two numbers  \n”);  

scanf(“%d%d”,&a,&b); 

sum(a, b); 

getch(); 

} 

 

void sum(int m, int n ) 

{ 

int c; 

c=m+n; 

printf(“\n the sum is %d  “,c); 

}  

Output: 

enter two numbers  

5 

10 

the sum is 15 

 

Function with arguments and return values 

 In this type of function the first function calls the second functions, by passing one or 

more arguments to second function. The second function performs its calculations returns 

answer or a value to the first function. 

The syntax is: 

 

Write a C program to illustrate function with arguments and return value. 

#include<stdio.h> 



 
Functions 

 

SSASGFG College, Hospatte Page 7 
 

#include<conio.h> 

int sum(int, int ); 

void main( ) 

{ 

int a,b,c; 

clrscr( ); 

printf(“\n enter two numbers  \n”);  

scanf(“%d%d”,&a,&b); 

c=sum(a, b); 

printf(“\n the sum is %d  “,c); 

getch(); 

} 

 

int sum(int m, int n ) 

{ 

int res; 

res=m+n; 

return(res); 

}  

Output: 

enter two numbers  

5 

10 

the sum is 15 

 

Recursive Function 

 In many situations it is possible for us to have a function that call itself directly or 

indirectly again and again such function are called recursive functions. It is also called 

recursion. 

General form is: 

function1(a) 

{ 

--------------------- 

---------------------- 

y=function1(a); 

} 

 

Write a C program to find factorial of a given number using recursive. 

#include<stdio.h> 

#include<conio.h> 



 
Functions 

 

SSASGFG College, Hospatte Page 8 
 

int fact(int ); 

void main( ) 

{ 

int n,f; 

clrscr( ); 

printf(“\n enter a numbers  \n”);  

scanf(“%d”,&n); 

f=fact(n); 

printf(“\n the factorial of %d is %d  “,n,f); 

getch(); 

} 

 

int fact(int m ) 

{ 

If(m=0)  

return(1); 

else 

return(m*fact(m-1)); 

}  

Output: 

enter a number 

5 

the factorial of 5 is 120 

 

Nesting of Functions 

 Function within another function is called nested function.  

The syntax is: 

function1(a) 

{ 

------------------- 

------------------- 

------------------ 

Y=function2(); 

} 

 

Write a C program to illustrate nesting of function. 

#include<stdio.h> 

#include<conio.h> 

int sum(int, int ); 

void read(); 



 
Functions 

 

SSASGFG College, Hospatte Page 9 
 

void main( ) 

{ 

clrscr( ); 

read(); 

getch(); 

} 

 

void read() 

{ 

int a,b,c 

printf(“\n enter two numbers  \n”);  

scanf(“%d%d”,&a,&b); 

c=sum(a, b); 

printf(“\n the sum is %d  “,c); 

} 

 

int sum(int m, int n ) 

{ 

int res; 

res=m+n; 

return(res); 

}  

Arrays and Functions 

 We can pass an entire array from one function to another. To pass an entire array to 

a function we will have to just pass the name of the array as the actual argument. 

When we pass normal variable other than array, C makes a copy of the data and 

places it in a memory location associated with the receiving variable. 


