

Syllabus 2019-20 on words

M.Tech. [Mineral Processing] CBCS Programme

Department of Studies and Research in Mineral Processing

Vijayanagara Sri Krishnadevaraya University, Post Graduate Centre, Nandihalli-Sandur – 583 119. Ballari Dist. Karnataka www.vskub.ac.in | minerals@vskub.ac.in| vskubminpro@gmail.com Phone: 08395 278260 M.Tech (Mineral Processing) CBCS Programme syllabus for regular 6 semester and 4 semester lateral entry is effective from the year 2019-20. The syllabus was scrutinized and recommended in BOS in Mineral Processing held on 07.03.2019, at the Department of Studies and Research in Mineral Processing VSKU Post Graduate Centre, Nandihalli-Sandur; by the following BOS members

Name	Designation	Signature with Date
Prof. S.J. Gopalkrishna	Chairman BOS	lagiot of 103/2019
Prof. P.C. Naganoor,	Member	pegant
Prof. M.R. Patil	Member	018 polis 713/19
Dr. P. Sharathkumar	Member	P. Shandukumi 7.3.19
Prof. C. Venkataiah'	Member	Querear : 3/3/19
Prof. M.D. Khanadali	Member	701-761
Prof. G. Chandrakanth Dept. of Applied Geology Kuvempu University, Shivamogga	External Member	Gent 78/2019
Prof. M. Aruna Dept. of Mining Engineering, NITK Surathkal	External Member	Qu

PREAMBLE

M.TECH (MINERAL PROCESSING) CBCS PROGRAMME

The backbone of the economy of any nation is its natural resources especially theland, water and mineral and their potential utilization. The water, forest and farm resources are renewable part and whereas the mineral resources are non-renewable part and getprogressively exhausted as they are mined and removed. Therefore, it is imminent that greatest care has to be exercised in planning and judicious utilization of these precious, non-renewable mineral resources. India is bestowed with wide variety of minerals. India is not apoor country in mineral wealth, an increased attention has to be paid with respect to the proper utilization of these available natural resources.

The noted physicist and noble laureate Dr.C.V.Raman, has observed that "Unless weknow the value of minerals, know-how to utilize them, promote the welfare of the country,we should let them lie in ground. The making use of a mineral is as important as finding it."

Resources are known. Socio-enviro-technological advances have to be evolved for the judicious utilization of these available resources. The high grade ores are on fast decline warranting the use of lean grade ores to meet the demands of the user industry. In this contextmineral beneficiation is inevitable. Mineral processing also known as Ore dressing, Mineraldressing and better known as Mineral Processing Technology is a unique andmultidisciplinary post graduate programme. The programme is potential enough to addressthe burning issues of the mineral industry ie from mine to metal. M.Tech (MineralProcessing) is 3 Year (6 Semester) post graduate programme structured with engineering andother allied subjects to harness the young talents of the country. 15 Hard Core papers, 10 Soft Core papers and 15 Hard Core Practicals are taught. 6th semester (in III Year) isdedicated to project work (dissertation) of industrial related application or fundamentalstudies has to be carried out by the students. The duration of the project work is 4 months.

The syllabii is orderly structured and sequentialised with the needs of the mineral industry. The information and the contents of the programme and their industrial applications is continuously passed on to the students to keep them abreast of the present day developments in the mineral industry.

M.TECH. (MINERAL PROCESSING) CBCS PROGRAMME

STRUCTURE AND SYLLABUS

FIRST SEMESTER

SL.	SUBJECT		L - T - P		EXAM	MARK	S					
NO.	CODE	TITLE OF THE PAPER	(Hours)	CREDITS	HOURS	INTERNAL ASSESSMENT	THEORY / LAB					
		Hard Core Paper	rs – Theory									
1	MP HC – 1.1	Mineralogy	4 - 0 - 0	4	3	30	70					
2	MP HC – 1.2	Petrology and Elements of Mining	4 - 0 - 0	4	3	30	70					
3	MP HC – 1.3	Engineering Mathematics – I	4 - 0 - 0	4	3	30	70					
		Soft Core Papers – Tl	neory (Any tv	vo)								
4	MP SC – 1.4 Elements of Electrical Engineering		3 - 0 - 0	3	3	25	50					
5	MP SC – 1.5	Elements of Mechanical Engineering	3 - 0 - 0	3	3	25	50					
6	MP SC – 1.6	Mining Geology	3 - 0 - 0	3	3	25	50					
		Hard Core Paper	s – Practical									
7	MPL HC – 1.7	Mineralogy Lab	0 - 0 - 4	2	4		50					
8	MPL HC - 1.8	Mechanical Engineering Lab	0 - 0 - 4	2	4		50					
9	MPL HC – 1.9	Electrical Engineering Lab	0 - 0 - 4	2	4		50					
			TOTAL	24		140	460					
	Total Marks for First Semester 600											

SECOND SEMESTER

SL.	SUBJECT		L-T-P		EXAM	MARK	S					
NO.	CODE	TITLE OF THE PAPER	(Hours)	CREDITS	HOURS	INTERNAL ASSESSMENT	THEORY / LAB					
		Hard Core Paper	s – Theory									
1	MP HC – 2.1	Ore Geology	4 - 0 - 0	4	3	30	70					
2	MP HC – 2.2	Assaying	4 - 0 - 0	4	3	30	70					
3	MP HC – 2.3	Engineering Mathematics – II	4 - 0 - 0	4	3	30	70					
Soft Core Papers – Theory (Any two)												
4	MP SC – 2.4	Testing of Materials & Transport Phenomenon	3 - 0 - 0	3	3	25	50					
5	MP SC – 2.5	Computer Basics and Programming in C & C++	3 - 0 - 0	3	3	25	50					
6	MP SC – 2.6	Heat and Mass Transfer	3 - 0 - 0	3	3	25	50					
		Hard Core Papers	– Practical									
7	MPL HC – 2.7	Assaying Lab – I	0 - 0 - 4	2	4		50					
8	MPL HC – 2.8	Petrology Lab	0 - 0 - 4	2	4		50					
9	MPL HC – 2.9	Computer Basics& Programming in C&C++ Lab	0 - 0 - 4	2	4		50					
		Open Elective Paper (Other Department	nt Students)	– Theory (An	y One)							
1	MP OE – 1	Study of Minerals and Rocks	4 - 0 - 0	4	3	30	70					
2	MP OE -2	Mineral Resources of India	4 - 0 - 0	4	3	30	70					
			TOTAL	28		170	530					
	Total Marks for Second Semester 700											

THIRD SEMESTER

SL.	SUBJECT		L - T - P		EXAM	MARK	S						
NO.	CODE	TITLE OF THE PAPER	(Hours)	CREDITS	HOURS	INTERNAL ASSESSMENT	THEORY / LAB						
		Hard Core Paper	s – Theory										
1	MP HC – 3.1	Ore Microscopy & Research Methodology	4 - 0 - 0	4	3	30	70						
2	MP HC – 3.2	Mineral Processing – I	4 - 0 - 0	4	3	30	70						
3	MP HC – 3.3	Coal Preparation & Fuel Technology	4 - 0 - 0	4	3	30	70						
	Soft Core Papers – Theory (Any two)												
4	MP SC – 3.4	Surface Chemistry	3 - 0 - 0	3	3	25	50						
5	MP SC – 3.5	Indian Mineral Deposits and Plant Flow sheets	3 - 0 - 0	3	3	25	50						
6	MP SC – 3.6	Bio Processing	3 - 0 - 0	3	3	25	50						
		Hard Core Papers	s – Practical										
7	MPL HC – 3.7	Ores and Ore Microscopy Lab	0 - 0 - 4	2	4		50						
8	MPL HC – 3.8	Comminution and Classification Lab	0 - 0 - 4	2	4		50						
9	MPL HC – 3.9	Assaying Lab – II	0 - 0 - 4	2	4		50						
		Open Elective Paper (Other Departme	nt Students)	– Theory (An	y One)								
10	MP OE -3	Introduction to Mineral Processing	4 - 0 - 0	4	3	30	70						
11	MP OE - 4	Iron and Steel Making	4 - 0 - 0	4	3	30	70						
	·		TOTAL	28		170	530						
				Тл	tal Marka	s for Third Sem	ester 700						
				10	iai marks	s tot i nnu sen							

FIRST SEMESTER FOR LATERAL ENTRY

SL.	SUBJECT		L - T - P		EXAM	MARK	(S					
NO.	CODE	TITLE OF THE PAPER	(Hours)	CREDITS	HOURS	INTERNAL ASSESSMENT	THEORY / LAB					
		Hard Core Pape	rs – Theory									
1	MP HC – 1.1	Mineralogy	4 - 0 - 0	4	3	30	70					
2	MP HC – 3.1	Ore Microscopy & Research Methodology	4 - 0 - 0	4	3	30	70					
3	MP HC – 3.2	Mineral Processing – I	4 - 0 - 0	4	3	30	70					
4	MP HC – 3.3	Coal Preparation & Fuel Technology	4 - 0 - 0	4	3	30	70					
Soft Core Papers – Theory (Any two)												
5	MP SC – 3.4	Surface Chemistry	3 - 0 - 0	3	3	25	50					
6	MP SC – 3.5	Indian Mineral Deposits and Plant Flow sheets	3 - 0 - 0	3	3	25	50					
7	MP SC – 3.6	Bio Processing	3 - 0 - 0	3	3	25	50					
		Hard Core Paper	s – Practical									
8	MPL HC – 3.7	Ores and Ore Microscopy Lab	0 - 0 - 4	2	4		50					
9	MPL HC – 3.8	Comminution and Classification Lab	0 - 0 - 4	2	4		50					
10	MPL HC – 3.9	Assaying Lab – II	0 - 0 - 4	2	4		50					
	TOTAL 28 170 530											
	Total Marks for First Semesterof Lateral Entry 700											

FOURTH SEMESTER

SL.	SUBJECT		L - T - P		EXAM	MARK	KS			
NO.	CODE	TITLE OF THE PAPER	(Hours)	CREDITS	HOURS	INTERNAL ASSESSMENT	THEORY / LAB			
		Hard Core Paper	s – Theory							
1	MP HC – 4.1	Mineral Processing – II	4 - 0 - 0	4	3	30	70			
2	MP HC – 4.2	Non Ferrous Extractive Metallurgy	4 - 0 - 0	4	3	30	70			
3	MP HC – 4.3	Mineral Processing – III	4 - 0 - 0	4	3	30	70			
		Soft Core Papers – Th	neory (Any tw	wo)						
4	MP SC – 4.4 Mineral Processing Plant Design – I		3 - 0 - 0	3	3	25	50			
5	MP SC – 4.5	Process Control & Automation	3 - 0 - 0	3	3	25	50			
6	MP SC – 4.6	Industrial Management	3 - 0 - 0	3	3	25	50			
		Hard Core Papers	– Practical							
7	MPL HC – 4.7	Gravity and Magnetic Separation Lab	0 - 0 - 4	2	4		50			
8	MPL $HC - 4.8$	Metallurgy Lab	0 - 0 - 4	2	4		50			
9	MPL HC – 4.9	Coal Preparation Lab	0 - 0 - 4	2	4		50			
TOTAL 24 140 460										
Total Marks for Fourth Semester 600										

SECOND SEMESTER FOR LATERAL ENTRY

SL.	SUBJECT		L-T-P		EXAM	MARK	S				
NO.	CODE	TITLE OF THE PAPER	(Hours)	CREDITS	HOURS	INTERNAL ASSESSMENT	THEORY / LAB				
		Hard Core Paper	s – Theory								
1	MP HC – 2.1	Ore Geology	4 - 0 - 0	4	3	30	70				
2	MP HC – 4.1	Mineral Processing – II	4 - 0 - 0	4	3	30	70				
3	MP HC – 4.2	Non Ferrous Extractive Metallurgy	4 - 0 - 0	4	3	30	70				
4	MP HC – 4.3	Mineral Processing – III	4 - 0 - 0	4	3	30	70				
Soft Core Papers – Theory (Any two)											
5	MP SC – 4.4	Mineral Processing Plant Design – I	3 - 0 - 0	3	3	25	50				
6	MP SC – 4.5	Process Control & Automation	3 - 0 - 0	3	3	25	50				
7	MP SC – 4.6	Industrial Management	3 - 0 - 0	3	3	25	50				
		Hard Core Papers	s – Practical				-				
8	MPL $HC - 4.7$	Gravity and Magnetic Separation Lab	0 - 0 - 4	2	4		50				
9	MPL $HC - 4.8$	Metallurgy Lab	0 - 0 - 4	2	4		50				
10	MPL HC – 4.9	Coal Preparation Lab	0 - 0 - 4	2	4		50				
		Open Elective Paper (Other Departme	nt Students)	– Theory (An	y One)						
11	MP $OE - 1$	Study of Minerals and Rocks	4 - 0 - 0	4	3	30	70				
12	MP OE -2	Mineral Resources of India	4 - 0 - 0	4	3	30	70				
TOTAL 32 200 600											
			Total Ma	rks for Seco	ond Semes	ter of Lateral l	Entry 800				

FIFTH SEMESTER

SL.	SUBJECT		L-T-P		EXAM	MARK	S					
NO.	CODE	TITLE OF THE PAPER	(Hours)	CREDITS	HOURS	INTERNAL ASSESSMENT	THEORY / LAB					
		Hard Core Paper	s – Theory									
1	MP HC – 5.1	Environmental Management & Mineral Processing Economics	4-0-0	4	3	30	70					
2				4	3	30	70					
3	MP HC – 5.3 Ferrous Extractive Metallurgy		4 - 0 - 0	4	3	30	70					
Soft Core Papers – Theory (Any two)												
4	MP SC – 5.4	Mineral Processing Plant Design – II	3 - 0 - 0	3	3	25	50					
5	MP SC – 5.5	Simulation & Modeling	3 - 0 - 0	3	3	25	50					
6	MP SC – 5.6	Waste Recycling	3 - 0 - 0	3	3	25	50					
		Hard Core Papers	s – Practical									
7	MPL HC – 5.7	Flotation and Dewatering Lab	0 - 0 - 4	2	4		50					
8	MPL HC - 5.8	Agglomeration Lab	0 - 0 - 4	2	4		50					
9	MPL HC – 5.9	Simulation & Modeling Lab	0 - 0 - 4	2	4		50					
	TOTAL 24 140 460											
Total Marks for Fifth Semester 600												

THIRD SEMESTER FOR LATERAL ENTRY

	SUBJECT		L - T - P		EXAM	MARF	KS										
SL.NO.	CODE	TITLE OF THE PAPER	(Hours)	CREDITS	HOURS	INTERNAL ASSESSMENT	THEORY/ LAB										
		Hard Core Papers	– Theory														
1	MP HC – 5.1	Environmental Management & Mineral Processing Economics	4 - 0 - 0	4	3	30	70										
2	MP HC – 5.2	Agglomeration & Cement Making	4 - 0 - 0	4	3	30	70										
3	MP HC – 5.3	Ferrous Extractive Metallurgy	4 - 0 - 0	4	3	30	70										
Soft Core Papers – Theory (Any two)																	
4	MP SC – 5.4	Mineral Processing Plant Design – II	3 - 0 - 0	3	3	25	50										
5	MP SC – 5.5	Simulation & Modeling	3 - 0 - 0	3	3	25	50										
6	MP SC – 5.6	Waste Recycling	3 - 0 - 0	3	3	25	50										
		Hard Core Papers -	- Practical														
7	MPL HC – 5.7	Flotation and Dewatering Lab	0-0-4	2	4		50										
8	MPL HC – 5.8	Agglomeration Lab	0-0-4	2	4		50										
9	MPL HC – 5.9	Simulation & Modeling Lab	0-0-4	2	4		50										
		Open Elective Paper (Other Department	Students) -	Theory (Any	v One)												
10	MP OE – 3	Introduction to Mineral Processing	4 - 0 - 0	4	3	30	70										
11	MP OE – 4	Iron and Steel Making	4 - 0 - 0	4	3	30	70										
			TOTAL	28		170	530										
			Total Ma	rks for Thi	rd Semes	ter of Lateral	Total Marks for Third Semester of Lateral Entry 700										

SIXTH SEMESTER / FOURTH SEMESTER FOR LATERAL ENTRY

SL.NO.	SUBJECT CODE	TITLE OF THE PAPER	CREDITS	MARKS							
		Dissertation work									
1	MP HC – 6.1	Dissertation	8	200							
2	MP HC – 6.2	Viva - Voce on Dissertation	4	100							
3	MP HC – 6.3	Industrial Training									
4	MP HC – 6.4	Industrial Tour Report									
		TOTAL	12	300							
	Total Marks for Sixth Semester 300 / Total Marks for Fourth Semester of Lateral Entry 300										

Credits / Marks of matrix for M.Tech Mineral Processing (Six Semesters)

Cree	dits / Ma	arks		Semesters																	
Credits	Papers	Marks	COURSES]	I SEM		I	I SE	Μ	I	II SI	EM	Г	V SF	CM	I	V SE	Μ	V	'I SF	M
(C)	(P)	(M)		С	P	Μ	С	P	Μ	С	P	Μ	С	P	Μ	С	P	Μ	С	P	Μ
102	32	2550	Hard Core	18	6	450	18	6	450	18	6	450	18	6	450	18	6	450	12	2	300
30	10	750	Soft Core	6	2	150	6	2	150	6	2	150	6	2	150	6	2	150			
8	2	200	Open Elective				4	1	100	4	1	100									
140	44	3500	TOTAL	24	8	600	28	9	700	28	9	700	24	8	600	24	8	600	12	2	300

Credits / Marks of matrix for M.Tech Mineral Processing (Four Semesters) Lateral Entry

Cre	edits / Mai	rks							Seme	esters						
Credits	Papers	Marks	COURSES	I SE		I SEM		I SEM II SEM		Μ	III SEM			IV SEM		
(C)	(P)	(M)		C	P	M	С	P	Μ	С	P	Μ	C	P	Μ	
74	22	1850	Hard Core	22	7	550	22	7	550	18	7	450	12	2	300	
18	6	450	Soft Core	6	2	150	6	2	150	6	2	150				
8	2	200	Open Elective				4	1	100	4	1	100				
100	30	2500	TOTAL	28	9	700	32	10	800	28	9	700	12	2	300	

M.Tech. (Mineral Processing) Regulations

- A candidate with B.Sc. degree having combination of any three of the following subjects Geology / Physics / Chemistry / Mathematics / Computer Science / Statistics / Electronics and or any B.Sc degree having studied Mathematics and Physics at PUC level are also eligible for admission to I year M.Tech (Mineral Processing) CBCS Program.
- Candidates with B.E. / B.Tech. Degree in Mineral engineering, Mining Engineering, Chemical Engineering, Civil Engineering, Metallurgy, Materials Engineering, Mechanical Engineering, Industrial Production and Electrical Engineering are only eligible to M.Tech (Mineral Processing) lateral entry, directly to III Semester.
- 3. Hard Core Subjects are Compulsory. Candidates have to select any **Two** Soft-Core subjects.
- 4. One Open Elective subject shall be chosen by the students from the subject offered by the other Departments during II & III Semesters.
- 5. For practical examinations a batch shall consists of not more than Eight Students. Students are not permitted to take the practical examination without the submission of the Certified Laboratory Records. 35 marks are allotted for carrying out of experiment and write-up of results and 10 marks are allotted to Viva-Voce and 5 Marks for Laboratory Records.
- 6. After the completion of II & IV Semester, students are sent for Plant Visits and Industrial Training/s respectively. One or Two Faculty members may accompany or visit the work place at least once during the training period for supervision. TA/DA has to be paid for the faculty members for their visit as per the University norms. Plant visits, Industrial training and Tours are compulsory
- 7. The students of V Semester of Regular Entry Mode and III Semester of Lateral Entry Mode have to undertake the Industrial Tour for a period of 15 days. Two Faculty members and one non teaching staff member have to accompany the students

for tour. TA/DA has to be paid for the faculty members and non teaching staff for their visit as per the University norms

- 8. The students have to undertake a Project Work During their VI Semester for Regular Entry Mode and IV Semester for Lateral Entry Mode in the Department or in any well established Mineral based organization / laboratory for a period of 4 months and have to submit their dissertation report. The Project Report has 8 Credits and Viva-Voce has 4 Credits. The Candidate should present the dissertation work before the Viva-Voce Committee consisting of BOE-Chairman and members, Chairman of the Department and their respective Guides.
- 9. Two seats may be reserved for industry sponsored candidates
- 10. All other conditions are as per the University Rules and Regulations promulgated from time to time.
- 11. The grade and the grade point earned by the candidate in the subject will be as given below:

Р	G	$\mathbf{GP} = \mathbf{V} \mathbf{x} \mathbf{G}$
90-100	9 (A++)	V x 9
80 - 89	8 (A+)	V x 8
70 - 79	7 (A)	V x 7
60 - 69	6 (B+)	V x 6
50 - 59	5 (B)	V x 5
00 - 49	0 (C)	V x 0

Here, P is the percentage of marks secured by a candidate in a course which isrounded tonearest integer. V is the credit value of the course. G is the grade andGP is the grade point.

If G=0(C), (GP=0) then the candidate is assumed to have automatically dropped the course. He/she is not said to have failed in the course.

- 12. The format for Hardcore and Open Elective Theory Paper for 70 Marks of 3 Hours duration
 - Section 1: Consists of 10 questions of 2 marks each covering all the units. $(2 \times 10 = 20 \text{ marks})$
 - Section 2: Consist of 4 Sub Questions with 5 marks each with choice; with total number of question not exceeding 6 covering all the units. (5 X 4 = 20 marks)
 - Section 3: Consist of 3 Sub Questions with 10 marks each with choice, the total number of question not exceeding 4, covering all the units. (10 X 3 = 30 marks)

13. The format for Soft core theory paper for 50 marks of 3 Hours duration.

- Section 1: Consists of 10 questions of 1 mark each covering all the units. $(1 \times 10 = 10 \text{ marks})$
- Section 2: Consist of 4 Sub Questions with 5 marks each with choice; with total number of question not exceeding 6 covering all the units.
 (5 X 4 = 20 marks)
- Section 3: Consist of 2 Sub Questions with 10 marks each with choice, the total number of question not exceeding 4 covering all the units. (10 X 2 = 20 marks)

M.Tech (Mineral Processing) CBCS Programme syllabus for regular 6 semester and 4 semester lateral entry is effective from the year 2019-20. The syllabus was scrutinized and recommended in BOS in Mineral Processing held on 07.03.2019, at the Department of Studies and Research in Mineral Processing VSKU Post Graduate Centre, Nandihalli-Sandur; by the following BOS members

Name	Designation	Signature with Date
Prof. S.J. Gopalkrishna	Chairman BOS	logist ef 103/2019
Prof. P.C. Naganoor,	Member .	peganoz
Prof. M.R. Patil	Member	018 polis 713/19
Dr. P. Sharathkumar	Member	P. Shandinkumi 7.3.19
Prof. C. Venkataiah'	Member	Querear 3/3/19
Prof. M.D. Khanadali	Member	701-761
Prof. G. Chandrakanth Dept. of Applied Geology Kuvempu University, Shivamogga	External Member	Gent 78/2019
Prof. M. Aruna Dept. of Mining Engineering, NITK Surathkal	External Member	Qu

FIRST SEMESTER

MD HC 11 MINED ALOCY (C-		6 1 1 4	
MP HC - 1.1 MINERALOGY (Co		for lateral entry students)	
Subject Code	MP HC- 1.1	IA Marks	30
Number of Lecture Hours/Week	04	Exam Marks	70
Total Number of Lecture Hours	52	Exam Hours	03
Unit – I			13 Hours
Introduction, Elements of Crystals Interfacial angle, law of constancy Symmetry characters– Plane of Sy Crystallographic Axes, Parameters a of Crystals into six systems. Crysta Holohedrons, Hemihedrons, Tetrah classes. Twins: Definition, char crystallography.	of interfacial ar mmetry, Axis of and Indices, Wei 1.Forms: Simple edrons and Hen	ngles, Contact and Optica of Symmetry and Centre ss and Muller's Notations , Open, Combination and ni morphs. Study of crys	al Goniometers. e of Symmetry. s. Classification d Closed forms. stals of Normal
Unit – II			13 Hours
Definition of Mineral, crystalline and amorphous states, Crystalline aggregates – Columnar, Bladed, Acicular, Fibrous, Tabular, Foliated, Granular and Imitative forms. Properties depending upon light: Colour Pleochroism. Play of colours, Opalescence, Fluorescence, Phosphorescence, Streak, Luster and Diaphaneity. Properties depending upon cohesion and elasticity: Cleavage, Fracture, Hardness and Tenacity. Properties depending upon electricity: Electrical conductivity, Frictional and thermoelectricity, Pyroelectricity and Piezoelectricity. Properties depending upon Heat and Magnetism: Fusibility, Thermal conductivity, Specific heat, Para and Diamagnetism. Determination of specific gravity by balance, Pychnometer, Jolly's spring balance, Walker's steel yard and Heavy liquids. Solid solution, interstitial and defect solid solution. Isomorphism, Polymorphism and Pseudomorphism.			
Unit- III			13 Hours
Classification of silicate structures amphiboles, mica and silica group o Native elements, Carbonates, Oxides	f minerals. Desc	ription of non-silicate gro	oup of minerals:
Unit – IV			13 Hours
Optical Mineralogy: Preparation microscope: Its mechanical and op plates – construction and use of examination of minerals under pla Relief, Isotropism and Anisotropism and types only), and Optic sign (Typ	tical parts. Nico Quartz wedge, ane polarized as n, Interference of	l prism and its construct Gypsum and Mica pla nd crossed nicols-Colou colors, Birefringence, Ex	tion. Accessory tes.Microscopic r, Pleochroism,
Reference books:			

1. H.H. Read - Rutley's Elements of Mineralogy

- 2. M.H.Battey Mineralogy For students
- 3. E.S.Dana & W.E.Ford A Text Book of Mineralogy
- 4. C.S.Hurlbut Dana's Manual of Mineralogy.
- 5. William E. Ford Dana's Textbook of Mineralogy

- 6. Pramod O Alexander A Hand Book of Minerals, Crystals, Rocks and Ores
- 7. C. Hammond, The Basics of Crystallography and Diffraction, Oxford University Press, 2009
- 8. Maureen M. Julian, Foundations of Crystallography, Taylor & Francis Group (2008)
- W. A. Deer (Editor), R. A. Howie (Editor), J. Zussman (Editor) Introduction to the Rock-forming Minerals Paperback –2013
- 10. Klein, C and Hurlbut, Jr., C.S. 1993; Manual of Mineralogy. John Wiley.
- 11. Krauskopf, K. B. and D. K. Bird. 1995. Introduction to Geochemistry. New York: McGraw-Hill.
- 12. William M. White, Geochemistry, 2013, Wiley-Blackwell

$ \mathbf{H} \mathbf{H} \mathbf{C} - \mathbf{I} \mathbf{L} \mathbf{I} \mathbf{E} \mathbf{I} \mathbf{K} \mathbf{O} \mathbf{L} \mathbf{O} \mathbf{O} \mathbf{I} \mathbf{A} \mathbf{N} \mathbf{D} $	ELEMENTS C	OF MINING		
Subject Code	MP HC- 1.2	IA Marks	30	
Number of Lecture Hours/Week	04	Exam Marks	70	
Total Number of Lecture Hours	52	Exam Hours	03	
Unit – I			15 Hours	
Petrology: Magma and its origin	. Primary and	Derivative magmas. Bo	owen's reaction	
principle. Diversity of Igneous rock				
immiscibility, fractional crystallization	ation, role of	volatiles in magmatic	evolution and	
Assimilation. Igneous rocks: Forms	, Structure and	Textures of Igneous Rocks	s. Classification	
and types of igneous rocks				
Unit-II			11 Hours	
Sedimentary Rocks: Process	of sedim	entation, types and	agents of	
weathering, transportation, deposition	n, diagenesis an	d lithification. Structures	of sedimentary	
rocks: Bedding, Current bedding, Cu	ross bedding, gr	aded bedding, Ripple mar	ks, Mud cracks	
etc. Classification of sedimentary rocks. Clastic and non-clastic sediments. Origin,				
	y rocks. Clast	ic and non-clastic sedi	ments. Origin,	
occurrence and characteristics of cor			ments. Origin,	
-			ments. Origin, 11 Hours	
occurrence and characteristics of cor	nmon sedimenta	nry rocks.	11 Hours	
occurrence and characteristics of cor Unit-III	nmon sedimenta Agents of met	ary rocks. camorphism. Textures an	11 Hours d structures of	
occurrence and characteristics of cor Unit-III Metamorphic Rocks: Types and	nmon sedimenta Agents of met n. Composition	ary rocks. amorphism. Textures an , origin and mode of	11 Hours d structures of	
occurrence and characteristics of cor Unit-III Metamorphic Rocks: Types and metamorphic rocks. Metasomatism	nmon sedimenta Agents of met n. Composition	ary rocks. amorphism. Textures an , origin and mode of	11 Hours d structures of	
occurrence and characteristics of cor Unit-III Metamorphic Rocks: Types and metamorphic rocks. Metasomatism Gneisses, Amphibolites, Granulites, S	nmon sedimenta Agents of met n. Composition Schists and eclo	amorphism. Textures an , origin and mode of gites rocks.	11 Hours d structures of occurrence of 15 Hours	
occurrence and characteristics of cor Unit-III Metamorphic Rocks: Types and metamorphic rocks. Metasomatism Gneisses, Amphibolites, Granulites, S Unit-III	Agents of met Agents of met n. Composition Schists and eclo	amorphism. Textures an , origin and mode of gites rocks.	11 Hoursd structures ofoccurrence of15 Hoursogy. Sampling:	
occurrence and characteristics of cor Unit-III Metamorphic Rocks: Types and metamorphic rocks. Metasomatism Gneisses, Amphibolites, Granulites, S Unit- III Elements of Mining: Introduction	Agents of met Agents of met n. Composition Schists and eclo on and definiti ods: Important	amorphism. Textures an , origin and mode of gites rocks. on of mining terminolo methods of Open cast, u	11 Hoursd structures ofoccurrence of15 Hoursogy. Sampling:nderground and	
occurrence and characteristics of cor Unit-III Metamorphic Rocks: Types and metamorphic rocks. Metasomatism Gneisses, Amphibolites,Granulites, S Unit- III Elements of Mining: Introduction Sampling techniques. Mining Meth	Agents of met Agents of met n. Composition Schists and eclo on and definiti ods: Important nods. Unit oper	ary rocks. camorphism. Textures an , origin and mode of gites rocks. on of mining terminolo methods of Open cast, un rations: Drilling, Blasting	11 Hours d structures of occurrence of 15 Hours ogy. Sampling: nderground and g, Loading and	
occurrence and characteristics of cor Unit-III Metamorphic Rocks: Types and metamorphic rocks. Metasomatism Gneisses, Amphibolites,Granulites, S Unit- III Elements of Mining: Introduction Sampling techniques. Mining Meth alluvial mining. Coal mining meth Transportation. Safety. Ventilation	Agents of met Agents of met a. Composition Schists and eclo on and definiti ods: Important nods. Unit oper and illuminatio	amorphism. Textures an , origin and mode of gites rocks. on of mining terminolo methods of Open cast, un rations: Drilling, Blasting n in underground mines.	11 Hoursd structures ofoccurrence of15 Hoursogy. Sampling:nderground andg, Loading andMines support.	
occurrence and characteristics of cor Unit-III Metamorphic Rocks: Types and metamorphic rocks. Metasomatism Gneisses, Amphibolites,Granulites, S Unit- III Elements of Mining: Introduction Sampling techniques. Mining Meth alluvial mining. Coal mining meth	Agents of met Agents of met a. Composition Schists and eclo on and definiti ods: Important nods. Unit oper and illuminatio	amorphism. Textures an , origin and mode of gites rocks. on of mining terminolo methods of Open cast, un rations: Drilling, Blasting n in underground mines.	11 Hoursd structures ofoccurrence of15 Hoursogy. Sampling:nderground andg, Loading andMines support.	

- 1. G.W.Tyrrel Principles of Petrology
- 2. J.F.Pettijohn Sedimentary Rock
- 3. Turner and Verhoogan Igneous and Metamorphic Petrology

- 4. A.Hrake Petrology for Students
- 5. M.Best Igneous and Metamorphic Petrology
- 6. R.N.P.Arogyaswamy A Course in Mining Geology
- 7. Mackinstry Mining Geology
- 8. D.J.Deshmukh Elements of Mining Technology Vol. I & II
- 9. Peele Robert Mining Engineers Hand Book Vol. I & II
- 10. Hyndman Petrology
- 11. Eenest G Ehlers/Harvey Blatt Petrology (Igneous, Sedimentary and Metamorphic)
- 12. McBirney Igneous Petrology
- 13. Anthoney R Phillpots Principles of Igneous and Metamorphic Petrology
- 14. M K Bose Igneous Petrology
- 15. Alokh K Gupta Petrology of Igneous rocks
- 16. B Bhaskar Rao Metamorphic Petrology
- 17. W D Winter Igneous and Metamorphic Petrology
- 18. Loren A Raymond Petrology (Igneous, Sedimentary and Metamorphic)

MP HC - 1.3 ENGINEERING MATHEMATICS - I			
Subject Code	MP HC- 1.3	IA Marks	30
Number of Lecture Hours/Week	04	Exam Marks	70
Total Number of Lecture Hours	52	Exam Hours	03
Unit – I			13 Hours

Algebra : Matrices, Determinants, Progressions(arithmetic and geometric), Permutation and Combinations Binomial theorem. Equations: Linear equations of first degree, quadratic equations, solutions by factorizing, Systems of simultaneous equations, analytical solutions of a equation, remainder theorem and synthetic division. Linear Differential Equations: Ordinary differential equations of second order, homogeneous, non-homogeneous with constant and variable coefficient, solving technique of linear differential equations

Unit-II

13 Hours

Frequency distribution: Construction of frequency distribution table and cumulative frequency table. **Graphical representation:** Histogram, frequency polygon and cumulative frequency curve. **Measure of central tendency**: Mean, Median, partition values, Mode, Measurement of dispersion, Quartile deviation, Mean deviation, Standard deviation.

Unit- III

13 Hours

Allied Angles and Compound Angles : a) Recapitulation of angle measurement, trigonometric ratios and standard angles. Allied angles: Meaning of allied angles. Signs of trigonometric ratios. Trigonometric ratios of allied angles in terms of θ . Problems on allied angles. b) Compound angles : Geometrical proof of sin (A+B) and cos (A+B) and hence deduce tan (A+B). Write the formulae for sin(A – B), cos (A – B) and tan (A – B), problems. Multiple and sub multiple angle formulae for 2A and 3A. Simple problems. Transformation formulae. Expression for sum or difference of sine or cosine of angles into product form. Expression for product of sine and cosine of angles into sum or difference form.

Unit- IV	13 Hours
Vectors : Defination of vector. Representation of vector as a directed	line segment.
Magnitude of a vector. Types of vectors. Position vectors. Expresssion of vect	or by means of
position vectors. Addition and subtraction of vectors in terms of line segn	nent.Vectors in
plane and vector in a space in terms of unit vector I, j and k respectively. Proc	luct of vectors.
Scalar product and vector product of two vectors. Geometrical meaning of sc	alar and vector
products. Application of dot (scalar) and cross(vector products. Projection	of a vector on
another vector. Area of parallelogram and area of triangle. Work done by for	ce and moment
of force.	

- 1. Kreyzic Advanced Engineering Mathematics
- 2. Mallik and Gupta Numerical Analysis
- 3. Mallik and Mallik Numerical Analysis
- 4. S.S.Sastry Numerical Analysis
- 5. M.Shantkumar Computer based Numerical Analysis
- 6. F. Ayres (Schaum series) Differential equations
- 7. P. Scield (Schaum series) Numerical Analysis.
- 8. V.Rajaraman Computer oriented Numerical Analysis
- 9. Samuel D.Counte & Carl Elementary Numerical Analysis An algorithmic approach.
- 10. Ronald E, Walpol and Raymond H.Myers Probability and Statistics for Engineers and Scientists
- 11. R.Lowell Wine Statistics for Scientists and Engineers
- 12. Etwod.G.Kirkpatrick Introductory Statistics and Probability for Engineering, Science and Technology
- 13. John.B.Kennedy and Adam.M. Neville Basic Statistical Methods for Engineers and Scientists
- 14. Umargi Probability and Statistical Methods.
- 15. A.Polland Introductory Statistics.

MPSC 1.4 ELEMENTS OF ELECTRICAL ENGINEEING			
Subject Code	MP SC- 1.5	IA Marks	25
Number of Lecture Hours/Week	03	Exam Marks	50
Total Number of Lecture Hours	39	Exam Hours	03
Unit – I	•		10 Hours
D.C.Circuits: Ohm's law, Kirchoff's law using C-Kirchoff's law. Principle of st solution of series and parallel ma electromagnetic induction, Lenz's law, co a magnetic field. Rise and decay of curre alternating emfs, average and effective Phasor representation of alternating quan series circuits containing resistance, in circuits, Power factor	uperposition. El gnetic circuits, oncept of self and nts in inductive values of sine v tities, voltage, c	ectromagnetism: Basic Hysterisis, Faraday d mutual induction. Ene circuits .A.C.Circuits: C wave. Form factor and urrent and power relation	e definitions, 's laws of ergy stored in Generation of peak factor, ons in simple

Generation of 3 phase voltages. Advantages of 3 phase system, star and delta connections, Relationship between line and phase quantities, power in 3 phase circuits. Measurement of power using two watt meter method.D.C.Machines: Constructional features, principles of operation, generators and motors, e.m.f.equation, speed control of D.C. motors, starters. Efficiency of D.C.generators and motors.

Unit- III

Unit-II

Transformers: Constructional features, principles of operation. Transformers on no-load and on-load, regulation, losses and efficiency. OC and AC test to predetermine efficiency and regulation. Three phase transformers, star and delta connections. Auto transformers and welding transformers.Alternators : Constructional features, principles of operation, e.m.f. equation with distribution and coil spar factor. Three phase induction motors: Construction, types, principle of operation, output, losses and efficiency, torque, slip, characteristics of starting torque, starting speed control. Star-delta starters, applications.

Unit- IV

Measuring Instruments: Classification, essentials of Indicating instruments, construction and working principles of – Moving iron and moving coil Voltameter and Ammeter, Dynamometer type wattmeter, single phase energy meter, Megger and C.R.O.Fuse: Necessity of fuse, rewireble and H.R.C. cartridge fuse. Earthing: Purpose and methods of earthing

Reference books:

- 1. B.L.Theraja A Text book of Electrical Technology
- 2. S.L.Uppal Electrical Engineering
- 3. S.K.Sahdev & D.S.Rana Elements of Electrical Science
- 4. E.Hughes Electrical Technology
- 5. H.Cotton Electrical Technology

MP SC - 1.5 ELEMENTS OF MECHANICAL ENGINEERING				
Subject Code	MP SC- 1.4	IA Marks	25	
Number of Lecture Hours/Week	03	Exam Marks	50	
Total Number of Lecture Hours	39	Exam Hours	03	
Unit – I			10 Hours	
Energy - Introduction, Sources of energy, Fuels - Nuclear, Tidal, Wind, Solar etc. Prime				
Movers: Types of prime movers. Definition of terms - Pressure, Work, Temperature, Heat,				
Power, Units of heat, Specific heat, Mechanical equivalent heat. Friction : Definition, Types				
of frictions, Limiting friction, limiting angle of friction, Coefficient of friction, Laws of solid				
friction and effects of friction. Lubrication : Definition, necessity, types and properties of				
lubricants. Methods of lubrication. Lubricators - Screw cap lubricator, Drop feed lubricator				
and Splash lubricator				
Unit-II			10 Hours	

Couplings : Definition and types - Muff, Flange and Flexible. Clutches : Definition, Necessity, Single plate and multi plate clutch and cone clutches. Brakes: Types of brakes - Block and Bond brake, Internal expanding brake. Difference between brake and clutch. Bearings: Definition of Shaft, Spindle and Axle. Types of bearings – Journal bearing, Foot step bearing, Collar bearing, Antifriction bearing, Ball and Roller bearings. Power Transmission: Methods of Motion and Power transmission.

10Hours

9 Hours

Page **22** of **71**

10 Hours

Unit- III	10 Hours
Belt Drive - Types - Open and Cross belt drive, Velocity ratio, Slip and creep,	, Guide Pulley,
Jackey pulley, Stepped cone pulley, crowning of pulleys, Fast and Loose pulle	y. Belt Drive -
Advantages of over Belt Drive. Chain Drive- elements of chain drive and ad	vantages. Gear
Drive – Advantages of gear drive. Types of Gears – Spur, Helical, Spiral, Be	vel, Worm and
Worm wheel, Rack and Pinion. Velocity ratio of Gear Drive, Gear train – De	
(simple and compound), Simple problems on Belt and GearDrive.Pumps	: Definition,
Classification of pumps, Reciprocating pump, Centrifugal pumps, Gear pum	p, Priming of
pumps, Air vessels, Simple problems.	

Unit – IV

9 Hours

Lathes : Types of lathes, description and functions of Lathe parts, Accessories and attachments, Lathe operations – Turning, Taper turning and their methods. Thread cutting, Knurling, Problems on taper cutting and thread cutting.Drilling Machine : Types of drilling machines, Drilling operations, Drill bits – types, cutting speed, feed and depth of cut. **Vibration :** Introduction, Natural and forced vibrations. Effects of vibration. Remedies to avoid vibrations. Wear: Different types of wears – Abrasion, Corrosion, Scoring, Scuffing, Pitting, Scaling. Minimization of wear with examples. Metrology : Various height Gauges, Micrometer, Bourdan Tube Pressure Gauge.

Reference books:

- 1. K.P.Roy, S.K.Hazrachoudhary & A.K.Hazrachoudhary Elements of Mechanical Engineering
- 2. K.P.Roy, S.K.Hazrachoudhary & A.K.Hazrachoudhary Elements of Workshop Technology Vol. I & II
- 3. K.R.Gopalkrishna Elements of Mechanical Engineering
- 4. N.D.Bhatt Machine Drawing
- 5. K.R.Gopalkrishna Machine Drawing

MP SC: 1.6 MINING GEOLOGY			
Subject Code	MP SC- 1.6	IA Marks	25
Number of Lecture Hours/Week	03	Exam Marks	50
Total Number of Lecture Hours	39	Exam Hours	03
Unit – I			11 Hours

Geological exploration: Geological mapping; its need, scope, technique and choice of the scale. Mineral exploration, its significance and objectives. Geological classification of the areas for mineral exploration. Collection of geological data. Exploration programme, selection of area, planning, organization and various stages of exploration. Geological parameters for mine planning and design. Methods of choice of sampling different geological formations. Concept of ore reserve, resource and methods of classification of ore reserves as proposed by various organizations. Methods of report writing and presentation of data.

Guides to Ore- Introduction: Targets and Loci: Ringed Targets. Intersecting Loci. Classification of Guides- Regional guides and guides of local importance. Physiographic Guides: Topographic Expressions of ore bodies: Deceptive outcrops. Physiographic environment of ore Deposits: Topography as a guide to iron ore. Physiographic relations of Placer Deposits: Guides to channels; Location of pay streaks. Physiographic in relation to oxidation and enrichment: Residual ores; Supergene sulphide zones. Geobotonical and Biogeochemcial guides.

Unit-II	10 Hours	
Mineralogical Guides: Rock Alteration: Nature of alteration; Target rings of alteration		
Mineralogical guides to solution-paths; Hypogene zoning as a guide. Oxidati	on products at	
depth; Unoxidized ore in outcrops; Minable oxidized ore; Surface oxidation products as		
indicators; Metals in the oxidized zone; Significance of gangue; Types of limonite derived		
from sulphides and other minerals.		
Unit- III	8 Hours	
	1	

Stratigraphic and lithologic guides in Syngenetic Deposits and in Epigenetic	
deposits, Reasons for favorability, Competent Vs. incompetent formations,	
Examples of favorable formations and Application	
Unit- IV	10 Hours

Fracture patterns as guides: Mechanical Principles of Fracturing, Stress: Planes of principal stress, the pattern of principal stress, Relation of fractures to stress: Characteristics of shears and tension fractures, Forces causing fracturing. Vein patterns: typical vein patterns and their Applications, Vein structures within the pattern, Localization of ore shoots within the fracture pattern.Contacts and folds as guides: Contacts, Folds younger than the ore, Folds older than the ore

Reference books:

- 1. Mackinstry Mining geology
- 2. RNP Aroga swamy Mining Geology

MPL HC - 1.7 MINERALOGY LAB

Megascopic and Microscopic identification of the following Minerals:

Quartz group: Important varieties

FelsIpars: Orthoclase, Microcline, Plagioclase, Labradorite

Mica group: Muscovite, Biotite

Pyroxenes: Augite, Diopside, Hypersthene

Amphiboles: Hornblende, Tremolite, Actinolite, Anthophyllite

Other Minerals: Olivine, Serpentine, Chlorite, Garnet, Talc, Tourmaline, Sillimanite,

Andalusite, Sillimanite, Kyanite, Corundum, Asbestos, Calcite, Dolomite, Baryte,

Magnesite, Fluorite, Gypsum.

MPL HC - 1.8 MECHANICAL ENGINEERING LAB:

Machine Shop: Jobs on plane turning, step turning, knurling and taper turning. Engineering Drawing: First angle projection, Orthographic projection of simple solids like prism, pyramid, cylinder, cone. Conversion of pictorial view into orthographic view involving sectional views. Isometric view of simple objects like cube, cylinder, cone, prism and the combinations

MPL HC - 1.9 ELECTRICAL ENGINEERING LAB:

Voltage and current relations & measurement of power using two wattmeters in Star and delta connected loads, Measurement of Inductance by VAW method, Calibration of single phase Energy meter, Determination of voltage, current and frequency with the help of CRO. Speed control of D.C. shunt motor by armature control and field control methods. Load test on D.C. shunt motor. Load test on single phase transformer.O.C. and S.C. tests on single phase transformer. Load test on three phase induction motor.

SECOND SEMESTER

Subject Code	MP HC- 2.1	IA Marks	ts) 30
Number of Lecture Hours/Week	04	Exam Marks	70
Total Number of Lecture Hours	52	Exam Hours	03
Unit – I			13 Hours
Introduction to ore geology: ma concentration, magma mixing, sub		agmatic ore formations – di	fferentiation,
Unit-II			13 Hours
Hydrothermal process – cavity alteration, mineral paragenesis and deposits associated with acidic, associated ore deposits mineral carbonatites. Classification of ore c	zoning in mine mafic and ult deposits asso	eral deposits. Geological thermotramafic rocks layered intrus	ometers. Ore ive and the
Unit-III			13 Hours
Ore deposits formed by sediment	ary processes:	Iron, Manganese, Carbonates,	Phosphates,
Sulphates, and Clay deposits. U	ranium and V	anadium deposits and Non-F	errous ores.
Evaporation, Residual and M	echanical con	centration, factors controlling	ng residual
concentration. Process of formation	on of residual d	leposits- Bauxite and Nickel. (Dre Deposits
formed by Oxidation and Superge		-	-
Mode of formation of placer depos			
Unit- IV			13 Hours
Ore deposits associated with Andulasite, Sillimanite, Kyanite deposits related to plate tectonics, o	and Garnet.	Metallogenic epochs and pro	

- 1. Jensen and Bateman, A.M. Economic Mineral Deposits
- 2. K.V.G.K. Gokhale & T.C.Rao Ore Deposits of India
- 3. R.L.Stanton Ore Petrology
- 4. C.F.Park (Jr) and Mac Diarmid Ore Deposits
- 5. W. Lindgren Mineral Deposits

MP HC - 2.2 ASSAYING

Subject Code	MP HC- 2.2	IA Marks	30
Number of Lecture Hours/Week	04	Exam Marks	70
Total Number of Lecture Hours	52	Exam Hours	03
Unit – I			13 Hours

Introduction, Sampling, Common apparatus and techniques, Accuracy and Precision. Separation techniques: Solvent extraction, Ion-exchange and brief idea about Chromatography

Unit-II	13 Hours
Titrimetric Analysis: Theory and classification. Redox and Complexome	etric titrations.
Gravimetry: Theory-methods-super saturation co-precipitation and pos	t-precipitation.
Precipitation from homogeneous solutions, Washing, drying and Ignition of t	the precipitate.
Electrogravimetry: Principles and applications in the electrolytic separation of	of metals. Fire
Assaying: Analysis of Gold and Silver. Proximate analysis of solid, liquid and	gaseous fuels
Unit- III	13 Hours
Spectral Methods of Analysis: Principles, Instrumentation and application of C	olorimetry and
Spectro photometry, Flame photometry, Atomic Absorption Spectrometr	ry and Flame
emission spectroscopy	
Unit- IV	13 Hours
Thermal Analysis: Thermo Gravimetric Analysis (TGA) and Differential The	ermal Analysis
(DTA). A brief review of Electron Spectroscopy for Chemical Analysis (ESCA), X-ray
diffraction, Electron Microprobe Analyser, (EMPA), X-ray Fluorescence and	nd Inductively
Coupled Plasma (ICP). Analysis of common ores like - Haematite, Pyrolus	ite, Magnetite,
Chromite, Dolomite, Limestone, Bauxite, Magnesite, Chalcopyrite, Sphaleri	te, Baryte and
Graphite.	

- 1. Chatwal & Anand Instrumental Methods of Chemical Analysis
- 2. G.W. Ewing Instrumental Methods of Chemical Analysis
- 3. B.K.Sharma Instrumental Methods of Chemical Analysis
- 4. P.J.Potts A Hand book of Silicate Rock Analysis
- 5. F.J.Welcher Standard Methods of Chemical Analysis
- 6. N.H.Furman Standard Methods of Chemical Analysis
- 7. A.I.Vogel Text Book of Quantitative Inorganic Analysis
- 8. Jain & Agarwal Metallurgical Analysis

MP HC 2.3 ENGINEERING MATHEMATICS - II				
Subject Code	MP HC- 2.3	IA Marks	30	
Number of Lecture Hours/Week	04	Exam Marks	70	
Total Number of Lecture Hours	52	Exam Hours	03	
Unit – I	· · · ·		13 Hours	

Finite differences: Forward and backward differences, Newton's forward and backward interpolation formulae. Divided differences- Newton's divided difference formula. Lagrange's interpolation formula and inverse interpolation formula (all formulae without proof)-Problems. **Numerical integration:** : Simpson's (1/3)th and (3/8)th rules, Weddle's rule (without proof) – Problems

Unit-II

13 Hours

Numerical Methods: Numerical solution of ordinary differential equations of first order and first degree, Taylor's series method, modified Euler's method. Runge - Kutta method of fourth order, Milne's and Adams-Bashforth predictor and corrector methods (No derivations of formulae-single step computation only).

Unit- III

13 Hours

Statistical Methods: Review of measures of central tendency and dispersion. Correlation-Karl Pearson's coefficient of correlation-problems. Regression analysis- lines of regression (without proof) –problems

Straight lines: Different forms of equations of straight lines

 $\mathbf{y} = \mathbf{m}\mathbf{x} + \mathbf{c} \; ,$

$$(y - y_1) = m(x - x_1)$$

$$(y - y_1) = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)(x - x_1)$$

General equation of the line ax + by + c = 0 (graphical representation and statements) and problems on the above equations. Equation of lines through a point and parallel or perpendicular line

Unit- IV

13 Hours

Probability Distributions: Random variables (discrete and continuous), probability mass/density functions. Binomial distribution, Poisson distribution. Exponential and normal distributions, problems. **Joint probability distribution:** Joint Probability distribution for two discrete random variables, expectation, covariance, correlation coefficient

- 1. Mallik and Gupta Numerical Analysis
- 2. B.V. Ramana "Higher Engineering Mathematics", Tata Mc Graw-Hill, 2006
- 3. N.P.Bali and Manish Goyal "A text book of Engineering mathematics", Laxmi publications, latest edition.
- 4. F. Ayres (Schaum series) Differential equations.
- 5. H.K. Dass and Er. RajnishVerma "Higher Engineering Mathematics", S.Chand publishing, 1st edition, 2011

Subject CodeINumber of Lecture Hours/WeekITotal Number of Lecture HoursI		IA Marks	25
	03	Exam Marks	50
	39	Exam Hours	03
Unit – I			10 Hours
Testing of Materials: Introduction deformation, strain, Hook's law, Your strain curve, yield point, percentage universal testing machine, Typical str- on brittle and ductile materials, natu Hook's law applied to shear stress and shear test. Torsion Test: Torsion in s	ng's modulus, elongation, pe ess-strain cur- re of failure. d strain, Rigid solid and holl	stress-strain diagram. Eng ercentage reduction in are ves. Compression Test: Co Shear; Tests: Shear stres lity modulus, single shear low circular shafts, torsion	ineering stress a, proof stress ompression tes s, shear strain test and double
torsion test. Wear Test: Introduction to Unit-II	pin on disc n	netnod	10 Hours
ransport phenomenon: Hardness;	Introduction	Miono Indontation Han	
		limit, fatigue test, effect	
fatigue property. Testing of miscellan pipes, ductility tests, bend test and reve to Non destructive testing; Visual exa	eous products erse bend test	s: Introduction, testing of a , Testing of tubular produc	sheet, strip and ts. Introductior
fatigue property. Testing of miscellan pipes, ductility tests, bend test and reve	eous products erse bend test	s: Introduction, testing of a , Testing of tubular produc	sheet, strip and ts. Introduction
fatigue property. Testing of miscellan pipes, ductility tests, bend test and reve to Non destructive testing; Visual exa testing, X	eous products erse bend test mination, leal applications. F s. Terminal ve	s: Introduction, testing of s , Testing of tubular produc cage testing, penetrant met Fluid flow phenomenon, Ba	sheet, strip and ts. Introduction thod, ultrasonic 10 Hours asic equations
fatigue property. Testing of miscellan pipes, ductility tests, bend test and reve to Non destructive testing; Visual exa testing, X Unit- III Fluid Mechanics: Fluid statics and its a of fluid flow. Practical motion in fluids	eous products erse bend test mination, leal applications. F s. Terminal ve	s: Introduction, testing of s , Testing of tubular produc cage testing, penetrant met Fluid flow phenomenon, Ba	sheet, strip and ts. Introduction thod, ultrasonic 10 Hours asic equations
fatigue property. Testing of miscellan pipes, ductility tests, bend test and reve to Non destructive testing; Visual exa testing, X Unit- III Fluid Mechanics: Fluid statics and its a of fluid flow. Practical motion in fluids conduits. Flow past immersed bodies.	applications. F s. Terminal ve Transportation	s: Introduction, testing of s , Testing of tubular produc cage testing, penetrant met Fluid flow phenomenon, Ba elocity. Flow of incompress n and metering of fluids.	sheet, strip and ts. Introduction thod, ultrasoni 10 Hours asic equations sible fluids in 9 Hours
fatigue property. Testing of miscellan pipes, ductility tests, bend test and reve to Non destructive testing; Visual exa testing, X Unit- III Fluid Mechanics: Fluid statics and its a of fluid flow. Practical motion in fluids conduits. Flow past immersed bodies. Unit- IV Heat Transfer: Heat transfer by condu	eous products erse bend test mination, leal applications. I s. Terminal ve Transportation	s: Introduction, testing of a , Testing of tubular produc kage testing, penetrant met Fluid flow phenomenon, Ba clocity. Flow of incompress n and metering of fluids.	sheet, strip and ts. Introduction thod, ultrasoni 10 Hours asic equations sible fluids in 9 Hours in fluids. Hea
fatigue property. Testing of miscellan pipes, ductility tests, bend test and reve to Non destructive testing; Visual exa testing, X Unit- III Fluid Mechanics: Fluid statics and its a of fluid flow. Practical motion in fluids conduits. Flow past immersed bodies. Unit- IV Heat Transfer: Heat transfer by condu- transfer to fluids without phase change	applications. F rransportation uction in solic ge. Mass Tran	s: Introduction, testing of s , Testing of tubular produc cage testing, penetrant met Fluid flow phenomenon, Ba clocity. Flow of incompress n and metering of fluids. Is. Principles of heat flow asfer: Phase equilibria. Eq	sheet, strip and ts. Introduction thod, ultrasoni 10 Hours asic equations sible fluids in 9 Hours in fluids. Hea uilibrium stag
fatigue property. Testing of miscellan pipes, ductility tests, bend test and reve to Non destructive testing; Visual exa testing, X Unit- III Fluid Mechanics: Fluid statics and its a of fluid flow. Practical motion in fluids conduits. Flow past immersed bodies. Unit- IV Heat Transfer: Heat transfer by condu	applications. F ransportation uction in solic ge. Mass Trar	s: Introduction, testing of s , Testing of tubular produc kage testing, penetrant met Fluid flow phenomenon, Ba elocity. Flow of incompress n and metering of fluids. Is. Principles of heat flow asfer: Phase equilibria. Eq solids. Gas absorption.	sheet, strip and ts. Introduction thod, ultrasonic 10 Hours asic equations sible fluids in 9 Hours in fluids. Hea uilibrium stag Principles o

- 2. Martyn.S. Ray The Technology and Applications of Engineering materials.
- 3. Thomus Curtney Mechanical Behaviour of materials.
- 4. H.W.Hayden, W.G.Muffatt and John Wulff The Structure and Properties of Materials.
- 5. R.S.Khurni Strength of Materials.
- 6. B.S.Bhavikatti Strength of Materials.
- 7. R.B.Bird Transport Phenomenon
- 8. Kern Heat Transfer
- 9. Traybal Mass Transfer Operations
- 10. Mc Cabe & Smith Unit operations of Chemical Engineering
- 11. Christic.J.Geankoplis Transport Process & Unit Operations.

MP SC - 2.5 COMPUTER BASIC			
Subject Code	MP SC- 2.5	IA Marks	25
Number of Lecture Hours/Week	03	Exam Marks	50
Total Number of Lecture Hours	39	Exam Hours	03
Unit – I			10 Hours
Fundamentals of Computers: Organiz devices, Output devices, Computer s in MS Word, MS Power point. File closing and attribute control, storag Page layout formatting and editing.M the data analysis and operations Data and objects. Measures of .dispersi ANNOVA, Correlation coefficien regression. Logarithm and sigmoid co	torage devices.M e handling, oper e and retrieval, IS excel, data rec base concepts, c ion. Statistical o t and regressio	S Office utilities, feature ations –opening, append sorting, merging, joining cord, file, data structures, operation, services, group design of experiments,	es, and facilities ling, cascading, g and dividing. view, handling s, tables graphs 1 and 2 way
Unit-II			10 Hours
Introduction to programming: Progra of C-language: Characters Used in Variable declaration Basic Data ty Additional operators, Structure of Formatted Input/output functions,	C, Identifier, Ke pes, Additional a C program I Escape sequer	eywords, Tokens, Const data types, Operators nput /output Functions aces, Assignment state	ants, Variables, & Expressions, & Statements: ment, multiple
assignment statement, writing user- f	riendly programs	s, Running a program usi	ng Turbo C
Unit- III			10 Hours
Control statement in C: if –else st control structures in C: Loop control statement, do-while statement, go to function, nested for loop. Arrays ar dimensional array, Array declaration String handling functions, Operate enumerated data types, file handling files. Introduction to Data Structure types, Definition and applications of	l statements, for statement, brea ad Subscripted V n. String manipu- tions with char- g, the C preproce ss: Primitive and	statement, Nested for sta k statement, continue sta variables: One-dimension lations in C: Reading / racters. Pointers, Struct essor, the C-standard libre non primitive data types	atements, while atement' exit () nal array, Two- writing strings, tures, Unions, ary and header s, Abstract data
Unit- IV			9 Hours
Introduction to Object Oriented P oriented programming, Data Types programming: Classes and Objects, Multilevel and Hybrid Inheritance, H Overloading, Operator Overloading a	s. Functions usi , Inheritance, Ty Polymorphism, D	ng c++, Concepts of pes of Inheritance : Si	object oriented ngle, Multiple,
Reference books: 1. Srivastav - MS Office Compl	ete		

- Srivastav MS Office Complete
 Udaya Kumar & Jeyapooyan Computer Concepts & C-programming; 2008 Vikas Publishing
- 3. E.Balaguruswamy Programming in C & C++,TMH 1990
- 4. Yashavant Kanitkar Publications Understanding Pointers in C &C++BPB
- 5. Mullish Cooper The Spirit of 'C' JAICO Publishing Hours
- 6. Bruce H.Hunter Understanding 'C' BPB Pub. 1985

Subject Code	MP SC- 2.6	IA Marks	25
Number of Lecture Hours/Week	03	Exam Marks	50
Total Number of Lecture Hours	39	Exam Hours	03
Unit – I			10 Hours
Dimensional analysis and model	testing: introduc	tion, criteria of similitud	e .fundamental
dimensions, Buckingham theorem,	shear force in th	ne flowing fluid. Frictiona	l loss in pipes.
Forced convection, natural or f	ree convection.	Advantages of dimens	ional analysis.
Limitations of dimensional analy			
numbers. Equivalent diameter. Mod			
Unit-II			10 Hours
Introduction to radiation: introduct	ion. Basic theor	ies of radiant heat transfe	r. Spectrum of
electromagnetic radiation. Reflection			
radiation. Black body and monochr	omatic Radiation	n. Planck law of radiation.	Total emissive
power and Stefan Boltzmann law.			
law of radiation. Weins displacem		ngle and intensity of radi	ation. Lamber
cosine law radiation from real surfa	ces.		1
			10 Hours
Unit- III			
	aw of diffusion .	steady state diffusion of ga	uses and liquids
Unit- III		•	*
Unit- III Mass transfer: Introduction. Ficks I		•	*
Unit- III Mass transfer: Introduction. Ficks I through solids. Equi molal diffusi		•	
Unit- III Mass transfer: Introduction. Ficks I through solids. Equi molal diffusi transfer coefficient.	on. Isothermal o	evaporation of water into	air. The mass

- 1. S.Domkundwar A course in Heat & mass transfer
- 2. Jacob & Hawkins Elements of Heat & mass transfer
- 3. ERG.Eckart & Robert, M Heat nad Mass Transfer
- 4. Brown Introduction to Heat Transfer

MPL HC- 2.7 ASSAYING LAB – I

Analysis of various elements like Fe, Mn, Mg, Ca, Pb, Cu, Ni, Ti, V etc., by titrimetric, gravimetric and colorimetric methods

MPL HC - 2.8 PETROLOGY LAB

Megascopic Identification of following Rocks: **Igneous**: Granite, Syenites, Pegmatites, Aplite, Diorite, Gabbro, Anorthosite, Dolerties, Rhyolites, Basalts, Ultramafic Rocks: Dunite, Pyroxenite, Peridotite, Komatiite. **Sedimentary**: Conglomerates, Breccias, Sandstones, Limestones, Dolomite, Shale, Laterites and Bauxites. **Metamorphic**: Schists, Gneisses, Marble, Quartzite, Slate, Phyllite, Amphibolite and Charnockite,Banded Iron Formations

MPL HC - 2.9 COMPUTER BASCIS - PROGRAMMING IN C & C++ LAB

Excel Math Basics: Writing Formulas and Expressions, Formatting Cells in Microsoft Excel, Locking Cells & Protecting Worksheets, Cell References in Microsoft Excel, Linking Worksheet Data in Excel, Microsoft Excel: Cool Keyboard Shortcuts, Using the Auto Fill Features of Excel, How to Create an Excel Chart, Chart Types: Pie, Column, Line, Bar, Area, ScatterCustomizing Charts: A Comprehensive Guide, ANOVAs [1 and 2 way], F-Test, t-Test, Moving Average, Exponential Smoothing. <u>Correlation</u> and <u>Regression</u>

Programs in 'C' involving (Turbo C++ IDE):

- 1. Constants, Variable, Data type and Evaluation of arithmetic expressions.
- 2. Input /output Functions & Statements
- 3 Control statement in C & C++.
- 4 Loop Control structures *for*, *while*, *do- while*, *switch*, *if*, *if-else*
- 5 Arrays, sorting, searching and matrices operations
- 6 String progressing
- 7 Use of Pointers, Structures and Recursive functions.
- 8 Classes & Objects, Inheritance, Polymorphism, Templates.

THIRD SEMESTER				
MP HC - 3.1: ORE MICROSCOPY & RESEARCH METHODOLOGY				
Subject Code	MP HC- 3.1	IA Marks	30	
Number of Lecture Hours/Week	04	Exam Marks	70	
Total Number of Lecture Hours	52	Exam Hours	03	
Unit – I			13 Hours	
Ore microscopy: Introduction to microscopic studies: Qualitative Reflection pleochroism. Isotropis properties, Polishing hardness, Sc parting, twinning etc.	properties – Colo m and Anisotrop	our, Reflectance, Bi pism, Internal refle	reflectance and ction, Rotation	
Unit-II			13 Hours	
Quantitative properties – Micro	indentation hardne	ess and Reflectivity.	Microchemical	
techniques, Modal analysis. Text	ures of Ore mine	erals, assemblages a	nd paragenesis.	
Application of Ore microscopic stud	ies in mineral techn	ology		
Unit- III			13 Hours	
Research methodology: Definition			•	
Research, Different types and Sty			^	
Critical and Positive thinking, R Infrastructure for Research proposal	-	C I		
Sources of Information in Mineral P		*		
in libraries, Use of catalogue cards	C			
Unit- IV			13 Hours	
Preparation and presentation of re	search report for	various publications.	Presentation of	
illustrations, reprography services an	nd Dissertation writ	ing. Modern Informat	ion Technology:	
E-mail, CD-ROM, Fax, INFLIBNE	ET, INTERNET. U	se of Computers in I	Research. Art of	
reading, understanding and writing	of Scientific Paper	s, Impact Factors and	l Citation Index.	
Plagiarism and Ethical values in Res	earch			
Reference books: 1. E.N.Cameron - Ore Microsco	opy			

- 2. J.R.Craig & Vaughan Ore Microscopy and Ore Petrology
- 3. P.Ramdohr The Ore Minerals and their Inter growths
- 4. A.S.Acharya Guide to Thesis And Paper Writing
- 5. R.Ranganatha Colon Classification
- 6. Henry & Sharp Cataloging
- 7. M.N.Borse Hand Book of Research Methodlogy.(Modern, Methods & New Technigues)
- 8. Deobold B.Van Dalen Understanding Educational Research An Introduction

MP HC – 3.2 MINERAL PRO	CESSING - I		
Subject Code	MP HC- 3.2	IA Marks	30
Number of Lecture Hours/Week	04	Exam Marks	70
Total Number of Lecture Hours	52	Exam Hours	03
Unit – I			13 Hours
Definition, Scope and necessity Economics. Physical Properties Sampling: Definition, purpose, type Definition of terms – Concentrate, Unit operations. Simple problems Efficiency and Selectivity index.	of Ores and the es of sampling ar Tailing, Middlin	eir importance in Min d measurements of accur ng, Recovery and Ratio of	eral Processing. acy of sampling. of concentration.
Unit-II			13 Hours
Comminution: Definition and bas	sic laws of Cor	nminution, Simple prob	lems on energy
estimations. Crushing: Purpose, M	echanism of cru	shing, types of crushers	and their salient
features and maintenance of crush and cataracting, estimation of cri grinding practice, open and closed	tical speed of tu	mbling mills. Types of	tumbling mills,
Unit- III			13 Hours
Laboratory Sizing: Definition of	particle size, n	neasurement of particle	size, Sizing by
screening and sub- sieve sizing. De	finition of sieve,	screen, mesh. Advantage	s of wet and dry
sieving. Graphical representation		•	•
applications. Industrial screens and			
application of ore microscopy in li	•		-
behavior of locked particles	Schatton studies a	ind its analysis. Methods	
Unit- IV			13 Hours
Movement of Solids in fluids :	Free settling Hi	ndered settling equal	
	•	e 1	•
affecting the settling of particles, L			
Reynolds number, Free settling rat	10 and Hindered	settling ratio and numeric	al problems
Reference books: 1. A.M.Gaudin - Principles of M 2. S.K.Jain - Ore Processing			
3. A.K.Lynch - Crushing and Gr	-		
 B.A.Wills - Mineral Processin E.J.Pryor - Mineral Processing 			
6. A.F.Taggart - Text Book of O			
7. A.F.Taggart - Hand Book of N	•		
8. A.M.Gaudin - Flotation			
9. R.P.King - Flotation			
10. Kelley & Spottiswood - Introd		-	
11. Robert.H.Richards, Charles Lo			ssing
12. Pradeep & Rakesh Kumar - Se	-	_	4
13. S.P.Mehrotra & P.Sarkar - Mi			trends.
 A.Z.M. Abouzeid - Mineral Pr S.Venkatachalam & Degalees 			ssino
16. T.Allen - Practicle Size Measu			55
17. A.K.Matis - Flotation Science	and Engineering		

18. A.K.Finch & G.S.Dobby - Column Flotation.

Subject Code	MP HC- 3.3	IA Marks	30
Number of Lecture Hours/Week	04	Exam Marks	70
Total Number of Lecture Hours	52	Exam Hours	03
Unit – I			13 Hours
Coal preparation: Scope, object	ives and applications.	Types and properties of	of coals in
general, industrial uses, character		e	•
studies, sink and float analysis of			rves, Mayer
curves, probable error, washability	index. Efficiency of co	al washing.	1
Unit-II Gravity separation process: Jiggin			13 Hours
coal jigs. Baum and Batac jigs. H Heavy Media (Commercial), M principles ,applications, performa non-coking coals. Fine coal wash Water only cyclones and their app	edia Recovery circuit. nce, efficiency and I ing: Modern trends. F lications in coal washin	Heavy Media cyclone Design calculations. Pre roth flotation, Oil aggle	es-operating paration of omeration,
of Designing a Modern coal washe Unit- III Fuel Technology: Scope, objectiv fuels with examples. Primary, s &gaseous fuels. Properties of fue calorimeter. Combustion of coal reactions	ry. res, and applications. The econdary & tertiary for els & their tests. Calor	ypes of fuels: solid, liqu uels. Advantages of so rific value of fuels, Oxy	ion. Factors 13 Hours iid, gaseous olid, liquid ygen bomb her relevant
of Designing a Modern coal washe Unit- III Fuel Technology: Scope, objective fuels with examples. Primary, s &gaseous fuels. Properties of fue calorimeter. Combustion of coal reactions Unit- IV	ry. res, and applications. The econdary & tertiary f els & their tests. Calor & their types. Boudd	uppes of fuels: solid, lique ypes of fuels: solid, lique uppes of fuels: solid, lique fuels. Advantages of so rific value of fuels, Ox pouard reactions and oth	ion. Factors 13 Hours iid, gaseous olid, liquid ygen bomb her relevant 13 Hours
of Designing a Modern coal washe Unit- III Fuel Technology: Scope, objectiv fuels with examples. Primary, s &gaseous fuels. Properties of fue calorimeter. Combustion of coal reactions Unit- IV Carbonization: Theory of carboniz	ry. res, and applications. The econdary & tertiary fiels & their tests. Calor & their types. Boudd ration, types of carboniz	ypes of fuels: solid, liqu yuls. Advantages of so rific value of fuels, Ox puard reactions and oth zation, advantages of car	ion. Factors 13 Hours iid, gaseous olid, liquid ygen bomb ter relevant 13 Hours rbonization,
of Designing a Modern coal washe Unit- III Fuel Technology: Scope, objectiv fuels with examples. Primary, s &gaseous fuels. Properties of fue calorimeter. Combustion of coal reactions Unit- IV Carbonization: Theory of carboniz	ry. res, and applications. The econdary & tertiary fiels & their tests. Calor & their types. Boudd ration, types of carboniz	ypes of fuels: solid, liqu yuls. Advantages of so rific value of fuels, Ox puard reactions and oth zation, advantages of car	ion. Factors 13 Hours iid, gaseous olid, liquid ygen bomb ter relevant 13 Hours rbonization,
of Designing a Modern coal washe Unit- III <i>Fuel Technology</i> : Scope, objective fuels with examples. Primary, se &gaseous fuels. Properties of fue calorimeter. Combustion of coal reactions Unit- IV Carbonization: Theory of carboniz Gasification of coal, smelter gas	ry. res, and applications. The econdary & tertiary f els & their tests. Calor & their types. Boudd ration, types of carboniz ifier and corex gas. st	ypes of fuels: solid, lique ypes of fuels: solid, lique uels. Advantages of so rific value of fuels, Ox pouard reactions and oth zation, advantages of car randard metallurgical co	ion. Factors 13 Hours id, gaseous olid, liquid ygen bomb ier relevant 13 Hours rbonization oke making
of Designing a Modern coal washe Unit- III Fuel Technology: Scope, objectiv fuels with examples. Primary, s &gaseous fuels. Properties of fue calorimeter. Combustion of coal reactions Unit- IV Carbonization: Theory of carboniz Gasification of coal, smelter gas process, properties of coke, Micu	ry. res, and applications. The econdary & tertiary fi els & their tests. Calor & their types. Boudd ration, types of carboniz ifier and corex gas. st um Test, Shatter Test,	ypes of fuels: solid, lique rules. Advantages of so rific value of fuels, Oxyouard reactions and oth zation, advantages of car andard metallurgical co Haven test, Roga Inde	ion. Factors 13 Hours iid, gaseous olid, liquid ygen bomb ter relevant 13 Hours rbonization, oke making x, Swelling
of Designing a Modern coal washe Unit- III Fuel Technology: Scope, objectiv fuels with examples. Primary, s &gaseous fuels. Properties of fue calorimeter. Combustion of coal reactions Unit- IV Carbonization: Theory of carboniz	ry. res, and applications. The econdary & tertiary files & their tests. Calor & their types. Boudd ration, types of carboniz ifier and corex gas. st im Test, Shatter Test, free swelling number	ypes of fuels: solid, lique ypes of fuels: solid, lique und fuels. Advantages of so rific value of fuels, Oxy pouard reactions and oth zation, advantages of car randard metallurgical co Haven test, Roga Index . plastic properties of	ion. Factors 13 Hours iid, gaseous olid, liquid ygen bomb her relevant 13 Hours rbonization, bke making x, Swelling coals,High

- 1. Osborne Coal Vol. I and II
- 2. Michel Coal
- 3. G.G.Sarkar Coal Preparation
- 4. Wilfred Francis Fuel Technology
- 5. Samir Sarkar Fuel and ombustion
- 6. Samir Sarkar Elements of Fuel
- 7. Samir Sarkar Utilization of Coal
- 8. James G Speight Chemistry and Technology of Coal
- 9. Godfrey W.Humus Fuel Technology
- 10. Wilfred Francis Fuel Technology
- 11. James G Speight Chemistry and Technology of Coal
- 12. Bernard R Cooper and Willim A Ellingson The Science and Technology of Coal utilization
- 13. S. Venkatachalam& Degaleecan Experiments in Mineral Engineering

Subject Code	MP SC- 3.4	IA Marks	25
Number of Lecture Hours/Week	03	Exam Marks	50
Total Number of Lecture Hours	39	Exam Hours	03
Unit – I			9 Hours
Chemical Bonding: Ionic bond- Pr	roperties of Ioni	ic solids, Covalent bond-	Properties of
covalent compounds, Polarity in co			
Classification, Preparation, Propertie	es and Applicatio	on of colloids	
Unit – II	**		10 Hours
Adsorption: Types of adsorption and	l its characteristic	cs. Thermodynamic model	s of isotherms.
Fraundlich Adsorption Isotherm,			
multiplayer adsorption isotherm, H	Henry's law and	Polany's potential theor	y, Mechanical
effects of adsorption. Chemisorption	1	• •	•
Unit – III			11 Hours
Physical Chemistry of Surface and	Interfaces: Liqui	id-Gas Interface: Surface	tension and its
measurement, Surface tension value	es, surface tensic		
		on and temperature and ot	ther properties
measurement, Surface tension value Surface tension and chemical con tension of solutions, Monolayers and	nposition. Therm	on and temperature and ot	ther properties
Surface tension and chemical con tension of solutions, Monolayers and Liquid-Liquid Interface: Interfaci	nposition. Therm d their effects. al tension and	on and temperature and ot nodynamics of surface te its values, Multicomp	ther properties ension, surface
Surface tension and chemical contension of solutions, Monolayers and	nposition. Therm d their effects. al tension and	on and temperature and ot nodynamics of surface te its values, Multicomp	ther properties ension, surface
Surface tension and chemical con tension of solutions, Monolayers and Liquid-Liquid Interface: Interfaci Spreading of liquid over liquid, Film Solid-Liquid Interface: Interfacia	nposition. Therm d their effects. al tension and ns at interfaces, E l energy, Stag	on and temperature and ot nodynamics of surface te its values, Multicomp Emulsions. nant layer at solid-liqu	ther properties ension, surface onent system aid interfaces
Surface tension and chemical con tension of solutions, Monolayers and Liquid-Liquid Interface: Interfaci Spreading of liquid over liquid, Film Solid-Liquid Interface: Interfacia Adsorption of liquids, Heat of wetti	nposition. Therm d their effects. al tension and ns at interfaces, E l energy, Stag ing, Adsorption f	on and temperature and ot nodynamics of surface te its values, Multicomp Emulsions. nant layer at solid-liqu	ther properties ension, surface onent system aid interfaces
Surface tension and chemical con tension of solutions, Monolayers and Liquid-Liquid Interface: Interfaci Spreading of liquid over liquid, Film Solid-Liquid Interface: Interfacia	nposition. Therm d their effects. al tension and ns at interfaces, E l energy, Stag ing, Adsorption f	on and temperature and ot nodynamics of surface te its values, Multicomp Emulsions. nant layer at solid-liqu	ther properties ension, surface onent system aid interfaces
Surface tension and chemical con tension of solutions, Monolayers and Liquid-Liquid Interface: Interfaci Spreading of liquid over liquid, Film Solid-Liquid Interface: Interfacia Adsorption of liquids, Heat of wetti	nposition. Therm d their effects. al tension and ns at interfaces, E l energy, Stag ing, Adsorption f ids.	on and temperature and ot nodynamics of surface te its values, Multicomp Emulsions. nant layer at solid-liqu From solutions, Importance	ther properties ension, surface onent system aid interfaces e of adsorption
Surface tension and chemical con tension of solutions, Monolayers and Liquid-Liquid Interface: Interfaci Spreading of liquid over liquid, Film Solid-Liquid Interface: Interfacia Adsorption of liquids, Heat of wetti and its utilization, Corrosion by liqu	nposition. Therm d their effects. al tension and ns at interfaces, E l energy, Stag ing, Adsorption f ids.	on and temperature and ot nodynamics of surface te its values, Multicomp Emulsions. nant layer at solid-liqu From solutions, Importance	ther properties ension, surface onent system aid interfaces e of adsorption
Surface tension and chemical con tension of solutions, Monolayers and Liquid-Liquid Interface: Interfaci Spreading of liquid over liquid, Film Solid-Liquid Interface: Interfacia Adsorption of liquids, Heat of wetti and its utilization, Corrosion by liqu Solid-Liquid-Gas Interface: Contac particles in liquid surface	nposition. Therm d their effects. al tension and ns at interfaces, E l energy, Stag ing, Adsorption f ids.	on and temperature and ot nodynamics of surface te its values, Multicomp Emulsions. nant layer at solid-liqu From solutions, Importance	ther properties ension, surface onent system aid interfaces e of adsorptior
Surface tension and chemical con tension of solutions, Monolayers and Liquid-Liquid Interface: Interfaci Spreading of liquid over liquid, Film Solid-Liquid Interface: Interfacia Adsorption of liquids, Heat of wetti and its utilization, Corrosion by liqu Solid-Liquid-Gas Interface: Contac particles in liquid surface Unit – IV	nposition. Therm d their effects. al tension and as at interfaces, E l energy, Stag ing, Adsorption f ids. et angle and its	on and temperature and of nodynamics of surface te its values, Multicomp mulsions. nant layer at solid-liqu from solutions, Importance measurement and charac	ther properties ension, surface onent system and interfaces e of adsorption teristics, Solic 9 Hours
Surface tension and chemical con tension of solutions, Monolayers and Liquid-Liquid Interface: Interfaci Spreading of liquid over liquid, Film Solid-Liquid Interface: Interfacia Adsorption of liquids, Heat of wetti and its utilization, Corrosion by liqu Solid-Liquid-Gas Interface: Contac particles in liquid surface Unit – IV Electrical characteristics on Interfac	nposition. Therm d their effects. al tension and as at interfaces, E l energy, Stag ing, Adsorption f ids. et angle and its es: Static electric	on and temperature and of nodynamics of surface te its values, Multicomp mulsions. nant layer at solid-liqu from solutions, Importance measurement and charac	ther properties ension, surface onent system id interfaces e of adsorption teristics, Solid 9 Hours -gas interfaces
Surface tension and chemical con tension of solutions, Monolayers and Liquid-Liquid Interface: Interfaci Spreading of liquid over liquid, Film Solid-Liquid Interface: Interfacia Adsorption of liquids, Heat of wetti and its utilization, Corrosion by liqu Solid-Liquid-Gas Interface: Contact	nposition. Therm d their effects. al tension and ns at interfaces, E l energy, Stag- ing, Adsorption f ids. et angle and its es: Static electric and its measure	on and temperature and of nodynamics of surface te its values, Multicomp mulsions. nant layer at solid-liqu from solutions, Importance measurement and charac	ther properties ension, surface onent system id interfaces e of adsorption teristics, Solic 9 Hours -gas interfaces sition of liquic

- 1. O.Kubaschewski and C.B.Alcoc Metallurgical Thermodynamics
- 2. Jan Leja Surface Chemistry of Froth Flotation
- 3. Puri & Sharma Principles of Physical Chemistry
- 4. Maron & Prutton Principles of Physical Chemistry
- 5. Samuel Glasstone Physical Chemistry
- 6. J.J.Bikerman Surface Chemistry, Theory and Applications
- 7. Lloyd.I.Osipov Surface Chemistry, Theory & Industrial Applications.
- 8. Duncan.J.Shaw Introduction to Colloid & Surface Chemistry.

Subject Code	MP SC- 3.5	IA Marks	25	
Number of Lecture Hours/Week	03	Exam Marks	50	
Total Number of Lecture Hours	39	Exam Hours	03	
Unit – I			9 Hours	
Importance of Mineral Resources for the Industry and Economy of a Nation. Miner				
Resources, Expendable and Non-expen	dable minerals. Cor	nservation of minera	als. Metallic	
and non-metallic minerals, Essential, Cri	tical and Strategic m	inerals.		
Unit-II			11 Hours	
Study of important Metallic and Non-m	netallic Mineral Dep	posits of India with	reference to	
Origin, Mode of occurrence, Mineralo	gy, Distribution, Pr	roduction, Process	Flow-sheets,	
Uses and Trades in India. Metallic depos	sits: Iron, Manganes	e, Chromium, Copp	er, Lead and	
Zinc, Bauxite, Gold and other precious m	netals			
Unit- III			10 Hours	
Refractory minerals, Diamond, Beach s	ands. Minerals used	l in Glass, Cement a	and Ceramic	
industries. Minerals used in fertilizer in	ndustry, Minerals us	sed as insulators, St	ructural and	
Building materials including Pigments	and Fillers, Miner	als used in chemic	al industry,	
Abrasive minerals, Industrial and manufa	acturing materials			
Unit- IV			9 Hours	
Fuel Minerals: Oil and Gas, Coal & Li	gnite. Definition, Co	omposition, types an	nd Ranks of	
Coals, Macerals and Lithotypes and their distribution. Distribution and Mode of Occurrence				
Could, Macolals and Enthotypes and the				
of Radioactive Minerals				

- 1. K.V.G.K.Gokhale & T.C.Rao Ore Deposits of India
- 2. S.Krishnaswamy Indian Mineral Resources
- 3. S.Deb Industrial Minerals and Rocks of India
- 4. W.Seely & S.Mudd Serie Industrial Minerals and Rocks
- 5. B.P.Radhakrishna Mineral Resources of Karnataka
- 6. R.N.P.Arogyaswamy A Course in Mining Geology
- 7. Roshan Bappu & Mular Mineral Processing Plant Design
- 8. Weiss (Editor) S.M.E. Hand Book of Mineral Processing Vol. I & II.

	G		
Subject Code	MP SC- 3.6	IA Marks	25
Number of Lecture Hours/Week	03	Exam Marks	50
Total Number of Lecture Hours	39	Exam Hours	03
Unit – I			9 Hours
Concept and scope of bio-miner	ral processing. Uti	lity of Microbes	for beneficiation and
selective dissolution of minerals/	metals. Types of n	nicrobes & their g	enesis. Culturing and
identification of microbes with re-	eference to bio-pro	cessing. Acid min	e drainage its impact
and control. Bio-flotation and floc	culation. Application	on of Bio-processir	g and dissolution
Unit-II		-	9 Hours
Classification of microorganism	s, Prokaryotic and	l Eukaryotic cells	; general properties,
distribution of microbes, appli	ed fields of mic	robiology. Enume	eration of microbes;
microscopic techniques, staining.			
and reproduction. Culture charac			••
reproduction of Fungi, Algae, Pro			
Unit- III		·	11 Hours
culture media and culture charact Control of microbes by physical Anabolism/catabolism; Central pathways of contaminant biodegr Energetic – Mass balances, Redo reactions; Energy balances (_G) Electron acceptors, fermentation. (bio-leaching and bio-oxidation).	l agents and chem metabolism: glyco radation; Metabolic ox reactions: electro) – Growth, Subst Monod and Halden Mineral bio-proce	ical methods. Mic lysis and the TC regulation Stoich on donor/electron a rate Partitioning a kinetics. Bio proc	A cycle; Metabolisms - CA cycle; Metabolic iometry and Bacterial acceptor; Redox half- and theoretical yield, essing of sulphide ore
Degradation of natural substances Unit- IV			10 Hours
Concept and principles of bio lea	1' 1' 1' 1'	1.1	

- 1. Agate. A.D. Basic principles of Geo-Chemistry
- 2. Venkatechalam. S Hydrometallurgy
- 3. Ehrlich, H.L. and Brierley, C.L Microbiological Mineral Recovery
- 4. Karavaiko. G.I and Kaznetsor, S.I., The Bactrial leaching of metals Iron Ores
- 5. Murr, L.E., Torma, A.E and Brierly. A.J. (eds) Metallurgical applications of bacterial leaching and related microbiological phenomena.
- 6. Ross, G. Biohydro metallurgy.

MPL HC - 3.7: ORES AND ORE MICROSCOPY LAB

Study of metallic and non-metallic ores: - iron, manganese, copper, bauxite, lead and zinc ores etc., **Microscopic studies of ores** – Important textures, Refletance, Bireflectance, Microhardness andetch test.

MPL HC - 3.8: COMMINUTION AND CLASSIFICATION LAB

Sampling techniques and error estimation.

Determination of physical characteristics of sample like specific gravity, bulk density, angle of repose. Size analysis, wet & dry sieve analysis, Sub-sieve analysis – Beaker decantation and Andreasen Pipette method, specific surface by permeability method, Verification of Gy's law. Determination of pulp density by actual, and specific gravity method [PD scale/tables]. Estimation of % solids both by weight and volume methods. Separation of sample by size and calculation of head and distribution of values. Recheck the actual by determinant methods. Crushing experiments – Jaw crusher, roll crusher. Verification of basic energy laws, Denver grindability test. Work index, Bond and HGI work index.

Determination of terminal velocity - Free settling test, Hindered settling test, Cyclone test-rig demonstration experiments and classification [air and mechanical] experiments and performance of laboratory screening experiments

MPL HC - 3.9: ASSAYING LAB - II

Separation of elements by Ion Exchange and Solvent Extraction methods.

Analysis of ores and Alloys. Experiments of Adsorption of liquids on solids.

FOURTH SEMESTER

MP HC-4.1: MINERAL PROCE	1		20
Subject Code	MP HC- 4.1	IA Marks	30
Number of Lecture Hours/Week	04	Exam Marks	70
Total Number of Lecture Hours	52	Exam Hours	03
Unit – I			13 Hours
Classification: Principles, Mech Performance of hindered settling settling, classifiers as concentratic cyclones, Autogenous media cy efficiency, types and their industr	classifiers, Opera on devices and sin clones: Sorting	ion and efficiency of s	orting hindered classifiers, Stub
Unit-II			13 Hours
characteristics. Gravity Separati principles, differenttypes of jigs,	-		
Separation in Streaming currents concentration. Tabling- factors af Spiral concentrators – principle performance and their efficiency introduction of principles and ope	s – Theory of this fecting the perform s, types of spiral c. Reichert cones, eration – Multigrav	ance of tables, different s, application of spiral Enhanced Gravity conc ity separator, Floatex de	types of tables concentrators entration: Brie
Separation in Streaming currents concentration. Tabling- factors af Spiral concentrators – principle performance and their efficiency introduction of principles and ope knelson concentrator, Falcon sepa	s – Theory of this fecting the perform s, types of spiral c. Reichert cones, eration – Multigrav	ance of tables, different s, application of spiral Enhanced Gravity conc ity separator, Floatex de	types of tables concentrators entration: Bries ensity separator
Separation in Streaming currents concentration. Tabling- factors af Spiral concentrators – principle performance and their efficiency introduction of principles and ope knelson concentrator, Falcon separ Unit- III	s – Theory of this fecting the perform s, types of spiral c. Reichert cones, eration – Multigrav rator, Kelsey Jig, A	ance of tables, different s, application of spiral Enhanced Gravity conc ity separator, Floatex de pic Jig etc.	types of tables concentrators entration: Bries ensity separator 13 Hours
Separation in Streaming currents concentration. Tabling- factors af Spiral concentrators – principle performance and their efficiency introduction of principles and ope knelson concentrator, Falcon separ Unit- III Principles of magnetic separation	s – Theory of this fecting the perform s, types of spiral c. Reichert cones, eration – Multigrav rator, Kelsey Jig, A	ance of tables, different s, application of spiral Enhanced Gravity conc ity separator, Floatex de pic Jig etc.	types of tables concentrators entration: Bries ensity separator 13 Hours rces involved in
Separation in Streaming currents concentration. Tabling- factors af Spiral concentrators – principle performance and their efficiency introduction of principles and ope knelson concentrator, Falcon separ Unit- III	s – Theory of this fecting the perform s, types of spiral c. Reichert cones, eration – Multigrav rator, Kelsey Jig, A , types of magnetic on. Construction, y, wet, low and hig	ance of tables, different s, application of spiral Enhanced Gravity conc ity separator, Floatex de pic Jig etc. e materials, different for operation and performa h intensity separators, c	types of tables concentrators entration: Bries ensity separator 13 Hours rces involved in ance factors of frum separators
Separation in Streaming currents concentration. Tabling- factors af Spiral concentrators – principle performance and their efficiency introduction of principles and ope knelson concentrator, Falcon separ Unit- III Principles of magnetic separation dry and wet magnetic separation different magnetic separators: Dry induced roll separator, cross belt	s – Theory of this fecting the perform s, types of spiral c. Reichert cones, eration – Multigrav rator, Kelsey Jig, A , types of magnetic on. Construction, y, wet, low and hig	ance of tables, different s, application of spiral Enhanced Gravity conc ity separator, Floatex de pic Jig etc. e materials, different for operation and performa h intensity separators, c	types of tables concentrators entration: Bries ensity separator 13 Hours rces involved in ance factors of frum separators
Separation in Streaming currents concentration. Tabling- factors aff Spiral concentrators – principle performance and their efficiency introduction of principles and ope knelson concentrator, Falcon separ Unit- III Principles of magnetic separation dry and wet magnetic separation different magnetic separators: Dry induced roll separator, cross belt separators. Unit- IV	s – Theory of this fecting the perform s, types of spiral c. Reichert cones, eration – Multigrav rator, Kelsey Jig, A , types of magnetic on. Construction, y, wet, low and hig separator, WHIMS	ance of tables, different s, application of spiral Enhanced Gravity conc ity separator, Floatex de pic Jig etc. c materials, different for operation and performa h intensity separators, c d, HGMS, etc. applicatio	types of tables concentrators entration: Bries ensity separator 13 Hours rees involved in ance factors of frum separators ons of magnetic 13 Hours
Separation in Streaming currents concentration. Tabling- factors af Spiral concentrators – principle performance and their efficiency introduction of principles and ope knelson concentrator, Falcon separ Unit- III Principles of magnetic separation dry and wet magnetic separation different magnetic separators: Dry induced roll separator, cross belt separators. Unit- IV Electrical Separation: Principles of	s – Theory of this fecting the perform s, types of spiral c. Reichert cones, eration – Multigrav rator, Kelsey Jig, A , types of magnetic on. Construction, y, wet, low and hig separator, WHIMS	ance of tables, different s, application of spiral Enhanced Gravity conc ity separator, Floatex de pic Jig etc. e materials, different for operation and performa h intensity separators, c b, HGMS, etc. application	types of tables concentrators entration: Bries ensity separator 13 Hours rces involved in ance factors of lrum separators ons of magnetic 13 Hours ies of materials
Separation in Streaming currents concentration. Tabling- factors af Spiral concentrators – principle performance and their efficiency introduction of principles and ope knelson concentrator, Falcon separ Unit- III Principles of magnetic separation dry and wet magnetic separation different magnetic separators: Dry induced roll separator, cross belt separators. Unit- IV Electrical Separation: Principles of Lifting and pinning effect, corona	s – Theory of this fecting the perform s, types of spiral c. Reichert cones, eration – Multigrav rator, Kelsey Jig, A , types of magnetic on. Construction, y, wet, low and hig separator, WHIMS f electrostatic separ discharge. Constru	ance of tables, different s, application of spiral Enhanced Gravity conc ity separator, Floatex de pic Jig etc. c materials, different for operation and performa h intensity separators, c d, HGMS, etc. application ration. Electrical propert ction, operation and perf	types of tables concentrators entration: Bries ensity separator 13 Hours rees involved in ance factors of frum separators ons of magnetic 13 Hours ies of materials formance factors
Separation in Streaming currents concentration. Tabling- factors af Spiral concentrators – principle performance and their efficiency introduction of principles and ope knelson concentrator, Falcon separ Unit- III Principles of magnetic separation dry and wet magnetic separation dry and wet magnetic separation different magnetic separators: Dry induced roll separator, cross belt separators. Unit- IV Electrical Separation: Principles of Lifting and pinning effect, corona of different electrical separators:	s – Theory of this fecting the perform s, types of spiral c. Reichert cones, eration – Multigrav rator, Kelsey Jig, A , types of magnetic on. Construction, y, wet, low and hig separator, WHIMS f electrostatic separ discharge. Constru high tension sepa	ance of tables, different s, application of spiral Enhanced Gravity conc ity separator, Floatex de pic Jig etc. c materials, different for operation and performa h intensity separators, c d, HGMS, etc. application ration. Electrical propert ction, operation and performators. Multi roll separators	types of tables concentrators entration: Bries ensity separator 13 Hours rees involved in ance factors of trum separators ons of magnetic 13 Hours ies of materials formance factors rator, plate and
Separation in Streaming currents concentration. Tabling- factors af Spiral concentrators – principle performance and their efficiency introduction of principles and ope knelson concentrator, Falcon separ Unit- III Principles of magnetic separation dry and wet magnetic separation different magnetic separators: Dry induced roll separator, cross belt separators.	s – Theory of this fecting the perform s, types of spiral c. Reichert cones, eration – Multigrav rator, Kelsey Jig, A , types of magnetic on. Construction, y, wet, low and hig separator, WHIMS f electrostatic separ discharge. Constru high tension separators. Applicat	ance of tables, different s, application of spiral Enhanced Gravity conc ity separator, Floatex de pic Jig etc. c materials, different for operation and performa h intensity separators, c d, HGMS, etc. application ration. Electrical propert ction, operation and performators. Multi roll separation ions of electrical separation	types of tables concentrators entration: Bries ensity separator 13 Hours rees involved in ance factors of frum separators ons of magnetic 13 Hours ies of materials formance factors rator, plate and ators. Auxiliary

- 1. Principles of Mineral Dressing A.M.Gaudin.
- 2. Flotation A.M.Gaudin.
- 3. Mineral Processing E.J.Pryor
- 4. Text Book of Ore Dressing A.F Taggart
- 5. Hand Book of Mineral Dressing A.F Taggart
- 6. Will's Mineral Processing Technology B.A. Wills

- 7. Introduction to Mineral Processing Kelly and Spottiswood
- 8. Mineral Processing S.K.Jain
- 9. Laboratory Experiments in Mineral Engineering S.Venkatachalam & S.N.Degaleesan
- 10. Unit operations in Mineral Engineering J.H.Brown
- 11. Mineral Processing Laboratory Manual A-Z M Abouzeid.
- 12. Crushing and Grinding Circuits A.J.Lynch
- 13. Flotation R.P.King
- 14. A Text Book of Ore Dressing Robert.H.Richards, Charles Lock &
- 15. R.Schumann Selected Topics in Mineral Processing Pradeep & Rakesh Kumar
- 16. Mineral Processing Recent advances S.P.Mehrotra & P.Sarkar
- 17. future trends.
- 18. Practicle Size Measurement T.Allen
- 19. Flotation Science and Engineering A.K.Matis
- 20. Column Flotation. A.J.Finch & G.S.Dobby
- 21. Flotation: Theory, Reagents and Testing R.D.Crozier
- 22. Flotation of sulphide Minerals K.S.E. Forssberg (Ed)
- 23. Developments in Mineral Processing Vol.6.
- 24. Surface Chemistry of Froth Flotation Jan Leja
- 25. Reagents in Mineral Flotation P.Somasundaran & Brij Moudgil
- 26. Operational Hand Book of Mineral Processing V.V.Ramana Murthy

MP HC - 4.2: NON FERROUS E	XTRACTIVE M	ETALLURGY	
Subject Code	MP HC- 4.2	IA Marks	30
Number of Lecture Hours/Week	04	Exam Marks	70
Total Number of Lecture Hours	52	Exam Hours	03
Unit – I			13 Hours
Thermodynamics and kinetics of m Principles, Fuels and Combustion for	e	ons.Sources of Metals. Pyro	metallurgy:
Unit-II			13 Hours
Unit processes of pyrometallurgy	- Drying, Calcini	ing, Roasting, Sintering, Sr	nelting and
Refining. Extraction of Copper, N	Nickel, Lead, Zinc	, Aluminium, Gold, Silver	, Titanium,
Magnesium, Nuclear and Reactive r	netals. Use of Hali	des in non-ferrous extraction	n
Unit- III			13 Hours
Hydrometallurgy: Principles, Che	emical and Elec	trochemical Principles of	Leaching,
Precipitation, Solvent Extraction,	Ion Exchange,	Extraction, E _h -pH Diagra	ams, Metal
Extraction under atmospheric press	ure, high pressure	and temperature. Extraction	n of metals-
Gold, Silver, Uranium, Copper,	Zinc and Nuclea	r metals. Bioleaching- Co	ncepts and
principles, E _h -pH Diagrams, Extra	action of common	metals, Microbes, Charact	eristics and
utility			
Unit- IV			13 Hours
Electrometallurgy: Principles, Elec	ctrowinning and I	Electrorefining of metals li	ke Copper,
Nickel, Lead, Gold, Silver, Zinc	etc., Electroplatin	g. Powder Metallurgy: Prin	nciples and

applications

Reference Books:

- 1. Habashi.F., Principles of Extractive Metallurgy. Vol I IV
- 2. Kubaschewski.O., Erons.E.L., and Alcock, C.B. Metallurgical Thermochemistry
- 3. Phelke. R.D., Unit processing of Extractive Metallurgy
- 4. Rosenqvist.T., Principles of Extractive Metallurgy
- 5. Newton.J., Extractive Metallurgy
- 6. Gilchrist.J.d.Extraction Metallurgy
- 7. Bray.J.L., Non-ferrous production Metallurgy
- 8. Ray.H.S., Sridhar.R. and Abraham.K.P., Extraction of Non-ferrous Metals
- 9. Pryor.E.J.,- Mineral Processing
- 10. Kurt Meyer, Pelletization of Iron Ores
- 11. Venkatachalam.S., Hydo-metallurgy

MP HC-4.3: MINERAL PROCESSING - III

Subject Code	MP HC- 4.3	IA Marks	30		
Number of Lecture Hours/Week	04	Exam Marks	70		
Total Number of Lecture Hours	52	Exam Hours	03		
Unit – I			13 Hours		

Flotation fundamentals: Introduction, Classification of flotation machines and machine features. Physical aspects of Flotation – Surface Energy and surface tension, Interfacial tension, Cohesion, adhesion and Contact angle. Types of interfaces, Electrokinetic Phenemenon, Electrical Double Layer at the Solid-Liquid interface. Alteration of Solid surfaces caused by mechanical forces. Adsorption and its characteristics, pH, Solid/Liquid ratio. Micro flotation tests, Laboratory flotation tests, Flotation Kinetics and Factors affecting flotation

Unit-II

13 Hours

Chemical Aspects – Flotation reagents and their Classification. Functions of each class of reagents. Dissociation and hydrolysis, Kraft point and Cloud point. Mechanism of Adsorption of reagents and Characteristics. Attachment of reagents to minerals as surface compounds, Attachment of reagents to Air bubble surface. Joint action of collectors and frothers. Mineralized froths and their stability. Types of flotation – Selective flotation, Skin flotation, Reverse flotation, Floc-flotation, Electro-flotation, ion flotation and Differential flotation.

Unit-III13 HoursIntroduction to dewatering and drying. Flocculation and Dispersion, principles of
flocculation and dispersion phenomena. different types of flocculants used in dewatering
techniques, selective flocculation and their applications. Dewatering by gravity
sedimentation: Thickening principles and practices. Derivation of thickener diameter using
Coe and Clevenger equation and Kynche Model. Design of a thickener, factors affecting
thickeners operation and control. Different types of thickeners used in mineral industries such
as conventional thickener (Bridge support and Column support type), Hi-rate thickener,
lamella thickener, tray thickener etc., Dewatering Using Screens.13 HoursUnit-IV13 HoursFiltration: Principles of filtration, factors affecting the filtration, different types industrial
filtration is principles of filtration.14 hours

filters, cake filtration. **Centrifuging and drying**: Different types of thermal dryers and their application, centrifugal sedimentation. Application and practices of dewatering processes in mineral industries.

Tailing Disposal: Tailing ponds and Design & construction, Types, Industrial applications and water reclamation

Reference Books:

- 1. K.V.G.K Gokhale & T.C.Rao Ore Deposits of India
- 2. A.M.Gaudin Principles of Mineral Dressing
- 3. B.A.Wills Mineral Processing Technology
- 4. S.K.Jain Ore Processing
- 5. E.J.Pryor Mineral Processing
- 6. A.F.Taggart Text Book of Ore Dressing
- 7. A.F.Taggart Hand Book of Mineral Dressing
- 8. Kelly & Spottiswood Introduction to Mineral Processing
- 9. Robert.H.Richards,
- 10. Charles Lock & R.Schumann A Text Book of Ore Dressing
- 11. Pradeep & Rakesh Kumar Selected Topics in Mineral Processing
- 12. S.P.Mehrotra & P.Sarkar- Mineral Processing Recent advances and future trends
- 13. A.K.Lynch Crushing and Grinding Circuits
- 14. A.M.Gaudin Flotation
- 15. R.P.King Flotation
- 16. A.K.Finch & G.S.Dobby Column Flotation.
- 17. S.Venkatachalam & Degaleeson Laboratory Experiments in Mineral Processing
- 18. A.Z.M. Abouzeid Mineral Processing Laboratory Manual
- 19. T.Allen Particle Size Measurement
- 20. A.K.Matis Flotation Science and Engineering

MP SC - 4.4: MINERAL PROC	ESSING PLANT	DESIGN – I	
Subject Code	MP SC- 4.4	IA Marks	25
Number of Lecture Hours/Week	03	Exam Marks	50
Total Number of Lecture Hours	39	Exam Hours	03
Unit – I	•		9 Hours
Sampling and Testing: Sampling	1	2	etallurgical
testing. Metallurgical testing proce	edures. Metallurgi	cal flow sheet development	
Unit-II			11 Hours
Selection and design features of (Crushing and Grin	ding Equipments: Primary, Se	econdary &
Tertiary Crushers. Rod and Ball m	nills. Autogenous	grinding from Test work.	
Unit- III			10 Hours
Screening – Classification – Grav	vity Separation: S	selection guidelines for size an	nd types of
Vibrating Screens in Ore crushin	ng plants. Applic	ation and selection of Spiral	Classifiers,
Selection of cyclone classifiers. Pr	umps and pump be	oxes for grinding circuits	
Unit- IV			9 Hours
Process and plant design for gravi	ty concentration -	examples with flow sheets. D	ense media
separation. Metallurgical, Operat	ing and Economic	characteristics Flow sheet dev	velonment

Reference Books:

- 1. K.V.G.K Gokhale & T.C.Rao Ore Deposits of India
- 2. A.M.Gaudin Principles of Mineral Dressing

- 3. B.A.Wills Mineral Processing Technology
- 4. S.K.Jain Ore Processing
- 5. E.J.Pryor Mineral Processing
- 6. A.F.Taggart Text Book of Ore Dressing
- 7. A.F.Taggart Hand Book of Mineral Dressing
- 8. Kelly & Spottiswood Introduction to Mineral Processing
- 9. Robert.H.Richards,
- 10. Charles Lock & R.Schumann A Text Book of Ore Dressing
- 11. Pradeep & Rakesh Kumar Selected Topics in Mineral Processing
- 12. S.P.Mehrotra & P.Sarkar Mineral Processing Recent advances and future trends
- 13. A.K.Lynch Crushing and Grinding Circuits
- 14. A.M.Gaudin Flotation
- 15. R.P.King Flotation
- 16. A.K.Finch & G.S.Dobby Column Flotation.
- 17. S.Venkatachalam & Degaleeson Laboratory Experiments in Mineral Processing
- 18. A.Z.M. Abouzeid Mineral Processing Laboratory Manual
- 19. T.Allen Particle Size Measurement
- 20. A.K.Matis Flotation Science and Engineering

MP SC - 4.5: PROCESS CONTROL AND AUTOMATION

Subject Code	MP SC- 4.5	IA Marks	25
Number of Lecture Hours/Week	03	Exam Marks	50
Total Number of Lecture Hours	39	Exam Hours	03
Unit – I			9 Hours
Introduction – Static performanc	e characteristi	cs, Dynamic characteristics	- Transducer
elements – Intermediate elemen	ts. Temperatu	re – Temperature measuren	nents, various
methods – column change – softe	ening type. Ins	truments on expansion conce	pt. Resistance
thermometers, Thermocouples -	Radiation type	pyrometers, Ionization prin	ciple – recent
methods. Liquid level measuremen	t – various typ	es.	
Unit-II			9 Hours
Pressure - Pressure measurement	– Manometer	s. Elastic properties utilization	on – Bourdon
guage – Diaphragm guage. Force	balancing conc	ept. Bellow type - vaccum gu	age- McLead,
Pirani Ionization gauge, High pre	ssure measurer	nents. Electrical type instrum	ents. Density
measurements – various types.			
Unit- III			11 Hours

Flow: Flow measurement, both weight and volumetric flow measurements. Usage of Bernoulli's principle – orifice plates, venturi, elbow flow meter, nozzle – weirs – notch rotameters, laminar flow meter, obstructionless flow meter – positive displacement type – vane type. Viscosity measurements: various methods, Rheometers, Moisture and humidity measurements, various methods. Conductivity meter – pH meter. Particle size measurement using Image analysis

Unit- IV

10 Hours

Introduction to feed back control P, PI & PID controllers, Liquid level, mixing tank, interacting and non-interaction systems. Control of Crushing plants, wet grinding circuits, and Flotation columns: Control objectives, Disturbances, Sensing techniques, Case studies of various advanced automatic control systems for different mineral processing plants.

Reference Books:

- 1. Curtis D.Johnson; 7th Edn Process Control Instrumentation Technology
- 2. Jon Stenerson, 2003 Industrial Automation and Process Control
- 3. F.G.Sainsky Process system and Control

MP SC - 4.6: INDUSTRIAL MAN	NAGEMENT		
Subject Code	MP SC- 4.6	IA Marks	25
Number of Lecture Hours/Week	03	Exam Marks	50
Total Number of Lecture Hours	39	Exam Hours	03
Unit – I	11		9 Hours
Growth and concept of Industry: - I	Basic and scienti	fic factory systems, types of c	wnership,
Principles of management. Organiz of co-ordination Functions of man controlling and decision making	• 1	C	
Unit-II			9 Hours
Personnel Management:- Function	is of personnel	management, recruitment, s	election and
training of Workers and supervise	ors. Production	Management: - Plant location	n, layout of
plants, depreciation and valuation	of machinery,	production planning and con	trol. Quality
productivity movement in India.	Automation in	India, its advantages and di	sadvantages.
Functions of production control and	l planning contro	ol, material control.	
Unit- III			11 Hours
Marketing: Functions of market advertising and sales promotion, du	•		al planning,
Unit- IV			10 Hours
Human Relations. Job specification	n and morale. F	Employer and Employee relat	ions Health

Human Relations: Job specification and morale, Employer and Employee relations, Health and Wealth of workers. Effects of physical conditions like noise, lighting, ventilation on output, fatigue and reduction of fatigue. Industrial safety: Accidents and their reduction. Settlement of individual disputes, ILO, workers participation in management.

Reference Books:

- 1. Barthwal. B.R.Industrial Economics- An introductory Text Wiley Eastern Ltd., New Delhi, 1984.
- 2. Mehta.P.L. Managerial Economics
- 3. Sultan Chand & Sons, New Delhi 1988 Dwivedi Text book of Managerial Economics
- 4. Vikas Publihsing House, New Delhi 1998 Minor.J.B. & Miner.M.G. Personnel and Industrial Relations:
- 5. A Managerial approach Mac Millan Publihsing Co.1997 Promod Verma & Surya Mokkerjee Trade Unions of India
- 6. Oxford & IBH Publishing Co. 1982 Banga.T.R. & Sharma.S.C. Industrial Organisation and Engineering Economics Khanna Publications, Delhi

MPL HC - 4.7: GRAVITY AND MAGNETIC SEPARATION LAB

Sink and float tests, preparation of washability cuves and reduced efficiency [tromp] curves Demonstration Experiments in Jigging, Tabling, Spiral concentration.

Performance analysis of Dry Magnetic separation / Wet Low Intensity / Wet High Intensity Magnetic Separation studies, Davies tube experiments, Laboratory Magnetic Amenability Studies.

MPL HC - 4.8: METALLURGY LAB

Process diagnostic metallurgical tests, Experiments on Reduction and Oxidation roasting, Thermal decomposition, Leaching [aqueous, acidic, alkaline, oxidative, reductive and complexing] [heap, agitational] and Phase rule

MPL HC - 4.9: COAL PREPARATION LAB

Sampling of coal, Study of washability curves, sink and float analysis. Preparation of Laboratory liquids, Study of washability index . Ash analysis, Proximate analysis of coal, Hard grove grindability index. calorific value of coals using oxygen bomb calorimeter.

Study of typical Indian coal washery flow sheets. Solving of washability problems and other calculations. Experiments on Jigging, H.M.Separation, froth flotation and oil agglomeration of coal. Study of coking and non-coking coals. Carbonization of coking coals, experiment on classification of fine coal using cyclone.

FIFTH SEMESTER

MP HC - 5.1 ENVIRONMENTAL MANAGEMENT & MINERAL PROCESSING ECONOMICS

ECONOMICS			
Subject Code	MP HC- 5.1	IA Marks	30
Number of Lecture Hours/Week	04	Exam Marks	70
Total Number of Lecture Hours	52	Exam Hours	03
Unit – I			13 Hours
Introduction: Impact on environme	•••	e	1 0
Biosphere, Natural cycle, Concep		· · ·	
Environmental Impact Assessme		-	•
Environmental Plan. Environmental			
Pollutants, Classification of Pollut Pollution on the Environment	ants, Types of Po	onution, Source of Pollut	ion, Effects of
Unit-II			13 Hours
Air Pollution: Introduction, com	nosition of sir	Origin of Atmosphere	
	-		
Atmosphere, (Troposphere, Strate		-	- /
Sources of Air pollution, Classifica			
and state of materials. Effects of			
material and climate).Air pollutio	•	-	
quality, units, sampling devices a	and methods of	sampling, control of air	pollution and
equipments			1
Unit- III			13 Hours
Water Pollution: Characteristics of pollution, Classification of water pollution			
treatment, control of water pollution			
processes. Soil pollution: Introducti	on to soil chemis	try, soil pollution, soil eros	sion, control of
land degradation, control of soil	pollution- solid	waste management. Soi	l pollution by
Industrial wastes, Soil pollution -			
Soil pollution by industrial wast Sources and Classification of Noise			
level, Measuring noise level, Indu			
pollution.	Pon		
Unit- IV			13 Hours
Role of mineral industry in Nationa	al Economy. Eco	nomics- Definition, Wealt	h, cost, prices,
Elements of economic activities			
Distribution of Income. Economic	-	-	
and cost accounting. Capital inter	-		
valuation. International Trade relate		•	-
		2	· · · · · · · · · · · · · · · · · · ·
estimating the cost of equipment.	Capital and opera	•	
estimating the cost of equipment. reports.	Capital and opera	•	

Reference Books

- 1. C.S.Rao Environmental Pollution Control Engineering
- 2. Suresh K.Dhameja Environmental Engineering and Management
- 3. M.N.Rao, H.V.N.Rao Air Pollution

- 4. Fred & Bell Environmental Geology, Principles and practices
- 5. Willium P.Cunningham and Barbara Wood worth Saigo Environmental Science A Global Concern
- 6. Herbert.F.Lund Industrial Pollution Control Hand book.
- 7. B.K.Sharma Environmental Chemistry
- 8. Anil Kumar De Environmental Chemistry
- 9. Amitava Bandopadhyay, N.G.Goswami P.Ramachandra Rao. Environmental West management in Iron and steel Industries.
- 10. P.S.Jaiswal and Nistha Jaiswal Environmental Law See Add-2003
- 11. Barthwal. B.R.Industrial Economics- An introductory Text Wiley Eastern Ltd., New Delhi, 1984.
- 12. Dwivedi Text book of Managerial Economics Vikas Publihsing House, New Delhi 1998.
- 13. Banga.T.R. & Sharma.S.C. Industrial Organisation and Engineering Economics Khanna Publications, Delhi.

C_1 C_1	MD HC 52	τΑΝΓΙ	20	
Subject Code	MP HC- 5.2	IA Marks	30	
Number of Lecture	04	Exam Marks	70	
Hours/Week Total Number of Lecture	52	Even Herre	02	
Hours	52	Exam Hours	03	
Unit – I			13 Hours	
Agglormeration: Principles, n	nachanisma an	d importance of size onlar		
Sintering of iron ores: effect of f				
Unit-II			13 Hours	
Pelletization - principles, mech	anisms, fundar	nental forces of cohesion be	tween particles.	
surface tension, forces between 1	microassemblies	s, pore size distribution, additi	ives, pre-heating	
& indurations, quality of agglomerates, effect of parameters size, moisture, binder				
a maurations, quanty of ag	giomerates, er	feet of parameters size, if	ioisture, billuei	
concentration, effect of drying a	-	-		
	and autoclave c	uring, fluxed pellets, compos	ite pre -reduced	
concentration, effect of drying a	and autoclave c	uring, fluxed pellets, compos	ite pre -reduced	
concentration, effect of drying a pellets and cold bonded pellets.	and autoclave c	uring, fluxed pellets, compos	ite pre -reduced	
concentration, effect of drying a pellets and cold bonded pellets material parameters	and autoclave c . Compaction b	uring, fluxed pellets, compos by piston/ roll press – effect	ite pre -reduced of machine and 13 Hours	
concentration, effect of drying a pellets and cold bonded pellets material parameters Unit- III	and autoclave c . Compaction b	uring, fluxed pellets, compos py piston/ roll press – effect naking, chemical compositio	ite pre -reduced of machine and 13 Hours n and physical	
concentration, effect of drying a pellets and cold bonded pellets material parameters Unit- III Cement Making: Introduction	and autoclave c . Compaction b n to cement m eral types of Por	uring, fluxed pellets, compos by piston/ roll press – effect naking, chemical compositio tland cement, special types of	ite pre -reduced of machine and 13 Hours n and physical cements. Major	
concentration, effect of drying a pellets and cold bonded pellets material parameters Unit- III Cement Making: Introduction properties of raw materials, gene	and autoclave c . Compaction b n to cement m eral types of Por es chemical	uring, fluxed pellets, compos by piston/ roll press – effect naking, chemical compositio tland cement, special types of analysis, raw material re	ite pre -reduced of machine and 13 Hours n and physical cements. Major equirement and	
concentration, effect of drying a pellets and cold bonded pellets material parameters Unit- III Cement Making: Introduction properties of raw materials, gene components, critical impuritie	and autoclave c . Compaction b n to cement m eral types of Por es chemical	uring, fluxed pellets, compos by piston/ roll press – effect naking, chemical compositio tland cement, special types of analysis, raw material re	ite pre -reduced of machine and 13 Hours n and physical cements. Major equirement and	
concentration, effect of drying a pellets and cold bonded pellets material parameters Unit- III Cement Making: Introduction properties of raw materials, gene components, critical impuriti proportionating Types of process	and autoclave c . Compaction b n to cement m eral types of Por es chemical s, product finence	uring, fluxed pellets, compos by piston/ roll press – effect naking, chemical compositio tland cement, special types of analysis, raw material re ess, reclaiming and proportion	ite pre -reduced of machine and 13 Hours n and physical cements. Major equirement and nating 13 Hours	
concentration, effect of drying a pellets and cold bonded pellets material parameters Unit- III Cement Making: Introduction properties of raw materials, gene components, critical impuriti proportionating Types of process Unit- IV	and autoclave c . Compaction b n to cement m eral types of Por es chemical s, product finence for raw mater	uring, fluxed pellets, compos by piston/ roll press – effect naking, chemical compositio tland cement, special types of analysis, raw material re ess, reclaiming and proportion ials, additives, beneficiation,	ite pre -reduced of machine and 13 Hours n and physical cements. Major quirement and nating 13 Hours operating costs.	
concentration, effect of drying a pellets and cold bonded pellets material parameters Unit- III Cement Making: Introduction properties of raw materials, gene components, critical impuritie proportionating Types of process Unit- IV Crushing and Grinding Circuits	and autoclave c . Compaction b n to cement m eral types of Por es chemical s, product finence for raw materia	uring, fluxed pellets, compos by piston/ roll press – effect naking, chemical compositio tland cement, special types of analysis, raw material re ess, reclaiming and proportion ials, additives, beneficiation, d cooling: - chemistry of ki	ite pre -reduced of machine and 13 Hours n and physical cements. Major equirement and nating 13 Hours operating costs. In process, kilm	

MP HC - 5.2 AGGLOMERATION AND CEMENT MAKING

References Books

1. H.S.Ray, R.Sridhar & K.P.Abraham Extraction of Non Ferrous Metals

- 2. T.Rosenqvist Principles of Extractive Metallurgy
- 3. H.S.Ray & A.Ghosh Principles of Extractive Metallurgy
- 4. R.H.Tupkari Introduction to Modern Iron Making
- 5. Lardinois, I., and Klundert, A van de Organic Waste Options for Small-scale Resource Recovery, Urban Solid Waste Series, TOOL / WASTE Consultants, 1993
- 6. Franceys, R A guide to the development of on-site sanitation. WHO 1992
- 7. Karekezi, S. and Ranja, T Renewable Energy Technologies in Africa, AFREPEN, 1997
- 8. Vogler, Jon Work from Waste Recycling Wastes to Create Employment, Intermediate Technology Publications, 1981. A classic text full of practical ideas for recycling and re-use of waste
- 9. Pollock, Cynthia Worldwatch paper Mining Urban Wastes: The Potential for Recycling, Worldwatch Institute 1987
- 10. S.Ramachandra Rao (Ed) Waste processing and recycling in mineral and metallurgical industries Vol. II: proceedings of the International Symposium on Waste Processing and Recycling in Mineral and Metallurgical Industries II, Vancouver, British Columbia, August 20-24, 1995
- 11. A.F Taggart Hand Book of Mineral Dressing SME HAND BOOK OF MINERAL PROCESSING : vol I and II
- 12. Kurt Meyer Pelletising of Iron Ores

MP HC -5.3 FERROUS EXTRAC	CTIVE METAL	LURGY	
Subject Code	MP HC- 5.3	IA Marks	30
Number of Lecture Hours/Week	04	Exam Marks	70
Total Number of Lecture Hours	52	Exam Hours	03
Unit – I			13 Hours
Iron Making: The blast furnace pla Sintering and Pelletization. Blast fu		ories. Raw material and their	r preparation.
Unit-II			13 Hours
Modern trends in blast furnace pro- Humidification of blast. Auxiliary is siliconization, External desulfuriza reduction (Hyl, Midrex), Electric Technology	fuel and lime dus ation. Direct red	t injection through the tuyer uction process – Rotary K	s. Laddle de- iln, Gaseous
Unit- III			13 Hours
Steel Making: Thermodynamics of	refining – Carbo	n, Silicon, Manganese, Pho	sphorous and
Sulphur reactions. Deoxidization of L.D.Process	f steel – Raw ma	terials for steel making. Ste	el making by
Unit- IV			13 Hours
Steel making by Oxygen bottom Secondary steel making processe continuous casting of steel, Product	s. Electric arc f	furnace process, Casting p	▲

References Books:

- 1. Biswas. A.K. Principles of Blast Furnace Iron making
- 2. Tupkary.R.H. Introduction to Modern Iron Making

- 3. Tupkary.R.H and Tupkary.V.R An Introduction to Modern Steel Making
- 4. Kurt Meyer Pelletising of Iron Ores
- 5. Ghosh.A and Chatterjee.A Iron making and Steel making
- 6. Ghosh.A. Text book of Material and Metallurgical thermodynamics

MP SC 5.4 MINERAL PROCE Subject Code	MP SC- 5.4	IA Mark	s	25	
Number of Lecture Hours/Week	03	Exam Mar		50	
Total Number of Lecture Hours	39	Exam Hou	Irs	03	
Unit – I				9 Hot	
Flotation: Basic functions and sizin families, Selection of chemical reag	•				ichin
Unit-II				6 Hou	irs
Magnetic and Electrostatic separa Electrostatic separators. Flow sheet	• •	ess and Plant d	esign o	of Magneti	c an
Unit- III				9 Hot	irs
of operation and control. Filters – drying, Handling and storage. U nit- IV	Types and theor			15 Ho	
Unit- IV Belt conveyers: Design, Selection, 3	~ 1				
ponds and water Reclamation fac collection systems – Electrostatic construction of Modern Mineral Pro	cilities. Environme system design an	ental considerat d Equipment a	ions in	mill sites.	Du
 Design and Application of a Cent ponds and water Reclamation fac collection systems – Electrostatic construction of Modern Mineral Pro Reference Books: K.V.G.K Gokhale & T.C.Rao A.M.Gaudin - Principles of M 	cilities. Environme system design an ocessing Plant and - Ore Deposits of Ine	ental considerat d Equipment aj Flow Sheets	ions in	mill sites.	Du
ponds and water Reclamation fac- collection systems – Electrostatic construction of Modern Mineral Pro- Reference Books: 1. K.V.G.K Gokhale & T.C.Rao 2. A.M.Gaudin - Principles of M 3. B.A.Wills - Mineral Processin	cilities. Environme system design an ocessing Plant and - Ore Deposits of Ind ineral Dressing	ental considerat d Equipment aj Flow Sheets	ions in	mill sites.	Du
ponds and water Reclamation factorial collection systems – Electrostatic construction of Modern Mineral Processinal Reference Books: 1. K.V.G.K Gokhale & T.C.Rao 2. A.M.Gaudin - Principles of M 3. B.A.Wills - Mineral Processin 4. S.K.Jain - Ore Processing	cilities. Environme system design an occessing Plant and - Ore Deposits of Ine ineral Dressing g Technology	ental considerat d Equipment aj Flow Sheets	ions in	mill sites.	Du
ponds and water Reclamation factorial collection systems – Electrostatic construction of Modern Mineral Procession of Modern Mineral Procession (Construction of Modern Mineral Procession) (Construction of Modern Mineral Procession) (Construction of Modern Mineral Procession) (Construction)	cilities. Environme system design an occessing Plant and - Ore Deposits of Ine ineral Dressing g Technology	ental considerat d Equipment aj Flow Sheets	ions in	mill sites.	Du
 ponds and water Reclamation factorial collection systems – Electrostatic construction of Modern Mineral Processing Reference Books: K.V.G.K Gokhale & T.C.Rao A.M.Gaudin - Principles of M B.A.Wills - Mineral Processing E.J.Pryor - Mineral Processing A.F.Taggart - Text Book of Or A.F.Taggart - Hand Book of M 	cilities. Environme system design an ocessing Plant and - Ore Deposits of In- ineral Dressing g Technology re Dressing fineral Dressing	ental considerat d Equipment aj Flow Sheets lia	ions in	mill sites.	Du
ponds and water Reclamation factor collection systems – Electrostatic construction of Modern Mineral Processing 1. K.V.G.K Gokhale & T.C.Rao 2. A.M.Gaudin - Principles of M 3. B.A.Wills - Mineral Processing 4. S.K.Jain - Ore Processing 5. E.J.Pryor - Mineral Processing 6. A.F.Taggart - Text Book of Or 7. A.F.Taggart - Hand Book of M 8. Kelly & Spottiswood - Introduction	cilities. Environme system design an occessing Plant and - Ore Deposits of Ind ineral Dressing g Technology re Dressing fineral Dressing fineral Dressing fineral Prossing	ental considerat: d Equipment aj Flow Sheets lia	ions in oplicatio	mill sites. ons. Desig	Du: n an
ponds and water Reclamation fac collection systems – Electrostatic construction of Modern Mineral Pro Reference Books: 1. K.V.G.K Gokhale & T.C.Rao 2. A.M.Gaudin - Principles of M 3. B.A.Wills - Mineral Processing 4. S.K.Jain - Ore Processing 5. E.J.Pryor - Mineral Processing 6. A.F.Taggart - Text Book of Or 7. A.F.Taggart - Hand Book of M 8. Kelly & Spottiswood - Introdu 9. Robert.H.Richards, Charles Lo	cilities. Environme system design an occessing Plant and - Ore Deposits of Ind ineral Dressing g Technology re Dressing fineral Dressing fineral Dressing fineral Prossing	ental considerat: d Equipment aj Flow Sheets lia	ions in oplicatio	mill sites.	Du n an
 ponds and water Reclamation factorial collection systems – Electrostatic construction of Modern Mineral Processinal R.V.G.K Gokhale & T.C.Rao A.M.Gaudin - Principles of M B.A.Wills - Mineral Processing E.J.Pryor - Mineral Processing E.J.Pryor - Mineral Processing A.F.Taggart - Text Book of Or A.F.Taggart - Hand Book of M Kelly & Spottiswood - Introdu Robert.H.Richards, Charles Log Dressing Pradeep & Rakesh Kumar - Set 	cilities. Environme system design an occessing Plant and - Ore Deposits of Ind ineral Dressing g Technology g re Dressing Aineral Dressing uction to Mineral Pro ock & R.Schumann elected Topics in Min	ental considerat d Equipment aj Flow Sheets lia cessing A neral Processing	ions in oplicatio	mill sites. ons. Desig Book of	Du n an
 ponds and water Reclamation factorial collection systems – Electrostatic construction of Modern Mineral Processing 1. K.V.G.K Gokhale & T.C.Rao 2. A.M.Gaudin - Principles of M 3. B.A.Wills - Mineral Processing 5. E.J.Pryor - Mineral Processing 6. A.F.Taggart - Text Book of Or 7. A.F.Taggart - Hand Book of M 8. Kelly & Spottiswood - Introdu 9. Robert.H.Richards, Charles Log Dressing 10. Pradeep & Rakesh Kumar - Se 11. S.P.Mehrotra & P.Sarkar - Mineral Processing 	cilities. Environme system design an occessing Plant and - Ore Deposits of Ind ineral Dressing g Technology g re Dressing dineral Dressing action to Mineral Pro ock & R.Schumann elected Topics in Min neral Processing – R	ental considerat d Equipment aj Flow Sheets lia cessing A neral Processing	ions in oplicatio	mill sites. ons. Desig Book of	Du: n an
 ponds and water Reclamation factorial collection systems – Electrostatic construction of Modern Mineral Processing 1. K.V.G.K Gokhale & T.C.Rao 2. A.M.Gaudin - Principles of M 3. B.A.Wills - Mineral Processing 5. E.J.Pryor - Mineral Processing 6. A.F.Taggart - Text Book of Or 7. A.F.Taggart - Hand Book of M 8. Kelly & Spottiswood - Introdu 9. Robert.H.Richards, Charles Lo Dressing 10. Pradeep & Rakesh Kumar - See 11. S.P.Mehrotra & P.Sarkar - Min 12. A.K.Lynch - Crushing and Grid 	cilities. Environme system design an occessing Plant and - Ore Deposits of Ind ineral Dressing g Technology g re Dressing dineral Dressing action to Mineral Pro ock & R.Schumann elected Topics in Min neral Processing – R	ental considerat d Equipment aj Flow Sheets lia cessing A neral Processing	ions in oplicatio	mill sites. ons. Desig Book of	Du: n an
 ponds and water Reclamation factorial collection systems – Electrostatic construction of Modern Mineral Processing 1. K.V.G.K Gokhale & T.C.Rao 2. A.M.Gaudin - Principles of M 3. B.A.Wills - Mineral Processing 5. E.J.Pryor - Mineral Processing 6. A.F.Taggart - Text Book of Or 7. A.F.Taggart - Hand Book of M 8. Kelly & Spottiswood - Introdu 9. Robert.H.Richards, Charles Lo Dressing 10. Pradeep & Rakesh Kumar - Set 11. S.P.Mehrotra & P.Sarkar - Min 12. A.K.Lynch - Crushing and Grif 13. A.M.Gaudin - Flotation 	cilities. Environme system design an occessing Plant and - Ore Deposits of Ind ineral Dressing g Technology g re Dressing dineral Dressing action to Mineral Pro ock & R.Schumann elected Topics in Min neral Processing – R	ental considerat d Equipment aj Flow Sheets lia cessing A neral Processing	ions in oplicatio	mill sites. ons. Desig Book of	Du: n an
 ponds and water Reclamation factorial collection systems – Electrostatic construction of Modern Mineral Processinal for the construction of Modern Mineral Processinal for the construction of Modern Mineral Processing K.V.G.K Gokhale & T.C.Rao A.M.Gaudin - Principles of M B.A.Wills - Mineral Processing E.J.Pryor - Mineral Processing E.J.Pryor - Mineral Processing A.F.Taggart - Text Book of Or A.F.Taggart - Hand Book of M Kelly & Spottiswood - Introdu Robert.H.Richards, Charles Log Dressing Pradeep & Rakesh Kumar - See S.P.Mehrotra & P.Sarkar - Mineral A.M.Gaudin - Flotation A.K.Lynch - Crushing and Gring A.K.Finch & G.S.Dobby - Collision 	cilities. Environme system design an occessing Plant and - Ore Deposits of Indi ineral Dressing g Technology gre Dressing fineral Dressing fineral Dressing fineral Dressing ock & R.Schumann elected Topics in Min neral Processing – R inding Circuits	ental considerat: d Equipment aj Flow Sheets lia cessing A neral Processing ecent advances ar	Text	mill sites. ons. Desig Book of e trends	Du: n an
 ponds and water Reclamation factorial collection systems – Electrostatic construction of Modern Mineral Processinal for the construction of Modern Mineral Processinal for the construction of Modern Mineral Processing K.V.G.K Gokhale & T.C.Rao A.M.Gaudin - Principles of M. B.A.Wills - Mineral Processing E.J.Pryor - Mineral Processing E.J.Pryor - Mineral Processing A.F.Taggart - Text Book of Or A.F.Taggart - Hand Book of M. Kelly & Spottiswood - Introdu Robert.H.Richards, Charles Log Dressing Pradeep & Rakesh Kumar - See S.P.Mehrotra & P.Sarkar - Mineral Processing A.K.Lynch - Crushing and Grif Grif A.M.Gaudin - Flotation A.K.Finch & G.S.Dobby - Collobby - Col	cilities. Environme system design an occessing Plant and - Ore Deposits of Ind ineral Dressing g Technology gre Dressing fineral Dressing fineral Dressing fineral Dressing ock & R.Schumann elected Topics in Min neral Processing – R inding Circuits	ental considerat: d Equipment aj Flow Sheets lia cessing A neral Processing ecent advances ar	Text	mill sites. ons. Desig Book of e trends	Du: n an
 ponds and water Reclamation factorial collection systems – Electrostatic construction of Modern Mineral Processinal for the construction of Modern Mineral Processinal for the construction of Modern Mineral Processing K.V.G.K Gokhale & T.C.Rao A.M.Gaudin - Principles of M B.A.Wills - Mineral Processing E.J.Pryor - Mineral Processing E.J.Pryor - Mineral Processing A.F.Taggart - Text Book of Or A.F.Taggart - Hand Book of M Kelly & Spottiswood - Introdu Robert.H.Richards, Charles Log Dressing Pradeep & Rakesh Kumar - See S.P.Mehrotra & P.Sarkar - Mineral A.M.Gaudin - Flotation A.K.Lynch - Crushing and Gring A.K.Finch & G.S.Dobby - Collision 	cilities. Environme system design an ocessing Plant and - Ore Deposits of Inc ineral Dressing g Technology g	ental considerat: d Equipment aj Flow Sheets lia cessing A neral Processing ecent advances ar	Text	mill sites. ons. Desig Book of e trends	Du n an

MP SC - 5.5 SIMULATION AN	D MODELING		
Subject Code	MP SC- 5.5	IA Marks	25
Number of Lecture Hours/Week	03	Exam Marks	50
Total Number of Lecture Hours	39	Exam Hours	03
Unit – I			9 Hours
Particle population and distribution	n functions: Dist	ribution functions- Empiric	cal distribution
functions, Truncated size distributi		•	•
the representative size and populat	ion averages. Dis	tributions based on particle	e composition,
Joint distribution functions. Minera	al liberation: beta	distribution for mineral libe	eration.
Unit-II			9 Hours
Size classification: Models based	l on screen capa	icity, Karra model and K	Kinetic Model.
General principles of operation of	of the Hydrocycl	one, Empirical performan	ce models for
hydrocyclones, The Plitt model for	the hydrocyclone		
Unit- III			11 Hours
Comminution operations: Crushin	ig machines, Jaw	and gyratory crushers, (Cone crushers,
Crushing mechanisms and produc	et size distributio	ons. Magnetic separation i	machines, Dry
Magnetic separation, Hopstock Mo	del.		
Unit- IV			10 Hours
Flotation: A kinetic approach to fl	otation modeling	, Pulp phase, Bubble phase	e, Froth phase,
Entrained phase. A kinetic model for	or flotation, Partic	cle–bubble collisions.	
Simplified kinetic models for flo	otation, Applicat	ion to flotation cells in	complex flow
			<u>+</u>
sheets			

References Book:

- 1. R.P.King; Butterwort Heinemann 2001 Modeling & simulation of Mineral Processing Systems
- 2. Bennette (Barrol) Particulate technology
- 3. PrasherGrinding Hand book

MP SC - 5.6: WASTE RECYCLING			
Subject Code	MP SC- 5.6	IA Marks	25
Number of Lecture Hours/Week	03	Exam Marks	50
Total Number of Lecture Hours	39	Exam Hours	03
Unit – I			11 Hours
Mining wastes: Types of waste, u waste products of mining using pr coal and other ferrous metals fro mining wastes, a case study of ind dumps	imary separation m mining wastes	methods, recovery of iron ore, ma s, recovery of radioactive minera	inganese ore, ls from gold
Unit – II			9 Hours
Processing waste: Types of proce	ssing waste was	te slurry treatment using thickner	s cyclones

Processing waste: Types of processing waste, waste slurry treatment using thickners, cyclones, sedimentation, settling techniques, solid waste recovery of valuable metals by simple separation methods, waste disposal, tailing dumps, ponds

Unit- III

Metallurgical waste: Types of metallurgical waste, iron ore fines, coal fines, coke breeze, dolomite fines, sinter fines, pellet fines and sludge etc.Uses of fines in pellet plants, coke fines, sinter plants, briquette making & recycling using sinter plants Sludge, treatment, segregation and separation of sludge constituents using primary separation methods, iron ore, coke, and coal fines separation

Unit- IV

Sludge: Sludge types, granulated slag reuse in cement plants. Sludge used in construction of roads and metal recovery from Sludge. Environment control and bio leaching techniques. Injection of iron ore and coke fines to blast furnaces and its advantages and disadvantages

References Books:

- 1. McHarry, Jan, Reuse Repair Recycle, Gaia Books Ltd. 1993 A valuable source book aimed at reducing wastage by thrift. Aimed mainly at a western audience but with many references applicable to the developing world
- Lardinois, I., and Klundert, A van de Organic Waste Options for Small-scale Resource Recovery, Urban Solid Waste Series, TOOL / WASTE Consultants, 1993. The focus of this book is on the recovery of urban organic waste, in developing countries, through activities such as animal raising, composting, the production of biogas and briquetting
- 3. Franceys, R A guide to the development of on-site sanitation. WHO 1992. Provides in-depth technical information about the design, construction, operation and maintenance of on-site sanitation facilities, with numerous practical design examples.
- 4. Karekezi, S. and Ranja, T. Renewable Energy Technologies in Africa, AFREPEN, 1997
- 5. Vogler, Jon Work from Waste Recycling Wastes to Create Employment, Intermediate Technology Publications, 1981. A classic text full of practical ideas for recycling and re-use of waste
- 6. Pollock, Cynthia Worldwatch paper Mining Urban Wastes: The Potential for Recycling,
- 7. Worldwatch Institute 1987
- 8. S.Ramachandra Road(Ed) Waste processing and recycling in mineral and metallurgical industries Vol. II: proceedings of the International Symposium on Waste Processing and Recycling in Mineral and Metallurgical Industries II, Vancouver, British Columbia, August 20-24, 1995

10 Hours

9 Hours

MPL HC- 5.7: FLOTATION AND DEWATERING LAB

Thickening tests, selection of flocculants, Filtration vacuum and pressure filtration tests Preparation of material and metallurgical balance

Flocculation and dispersion. Oil agglomeration.

Experiments on Flotation – measurement of contact angle, surface tension and frothing, flotation of oxides, sulphides, salts and natural floatable minerals, differential flotation, flotation kinetics Circuit configuration, locked cycle test etc. Adsorption

MPL HC - 5.8: AGGLOMERATION

Pelletization studies : effect of size, moisture and binder concentration, drying, preheating and induration.

Sintering of iron ores – effect of fluxes, moisture and fuel. Roast sintering of pyrite concentrate. Compaction by piston / roll press.

Study of processing and development of flow sheets for Iron Ores, Manganese ores, Copper, Lead & Zinc ,Bauxite, Graphite, Limestone & Dolerite, Baryte, Magnesite and Clays.

NOTE : Each student should carry out experiments and develop flowsheets for any 3 of the above minerals.

MPL HC - 5.9: SIMULATION & MODELING LAB

Simulation Exercises using Ore Dressing Plant Simulator (e.g. MODSIM) on:

- (Not less than 14 Exercises from the following)
- 1. Drawing Flow-sheet of Ore Dressing Plants
- 2. Simulation of crushing and grinding plants, Models for vibrating screens.
- 3. Simulation of gravity separation plants.
- 4. Dense medium separations baths and cyclones.
- 5. Autogenous gravity separations jigs, sluices, Riechert cones, water-only cyclones and spiral concentrators.
- 6. Simulation of flotation plants.
- 7. Models for flotation systems.
- 8. Comminution plants.
- 9. Models for SAG and FAG mills.
- 10. Models for ball and rod mills.
- 11. Models for classifiers.
- 12. Simulation of open and closed loop milling circuits.
- 13. Mineral liberation and comminution.
- 14. Simulation of combined comminution and concentration plants including regrinding.
- 15. Simulating complex plants.
- 16. Designing new plants.
- 17. Assessment of existing plants.
- 18. Calibration of models against plant data

SIXTH SEMESTER

MPHC 6.1 DISSERTATION	08 Credits
The student has to undertake a Project Work in the Department or in any well established Mineral based organization / laboratory for a period of 4 months and has to submit the dissertation report (<i>The dissertation Certificates and the Format is attached as annexure I, II & III</i>)	
MPHC 6.2 VIVA-VOCE	04 Credits
The student has to face Viva-Voce examination and has to defend his dissertation thesis submitted	
MPHC 6.3 INDUSTRIAL TRAINING	
After the completion of II and IV semester, the student has to undergo plant visit and industrial training respectively. The industrial visit report and industrial training report has to be submitted along with dissertation for evaluation.	
MPHC 6.4 INDUSTRIAL TOUR	
During the V semester programme (III Semester Lateral Entry), the students have to undertake the Industrial tour accompanied by 2 teaching faculty and 1 non teaching staff member for a period of 15 days. The detailed industrial tour report has to be submitted along with dissertation, industrial training reports for evaluation.	

SYLLABUS FOR OPEN ELECTIVE PAPERS

(FOR INTER-DEPARTMENT STUDENTS ONLY)

FOR II SEMESTER

MP OE1: STUDY OF MINERAL	LS AND ROC	KS	
Subject Code	MP OE 1	IA Marks	30
Number of Lecture Hours/Week	04	Exam Marks	70
Total Number of Lecture Hours	52	Exam Hours	03
Unit – I	1 1		13 Hours
Mineral – Definition, Physical pre- elasticity, Electrical conductivity, Electrical conductivity, Electrical conductivity, Electrical and their properties	Heat and Mag		of silicate and non-
Unit-II			13 Hours
Rock- Definition, magma and its of	rigin Rowan	a magation main aimla Cla	
NOCK - Definition, magina and its (ngin. Dowen	s reaction principle, Cla	issification of rocks.
Processof formation of igneous re	-		
-	ocks, structure		
Processof formation of igneous re-	ocks, structure		
Processof formation of igneous re- mode of occurrence of igneous rock	ocks, structure ks	e and texture of igneous	s rocks. Origin and 13 Hours
Processof formation of igneous re- mode of occurrence of igneous rock Unit III Classification of sedimentary rocks	ocks, structure ks	e and texture of igneous	s rocks. Origin and 13 Hours
Processof formation of igneous re- mode of occurrence of igneous rock Unit III Classification of sedimentary rocks sedimentary rocks.	ocks, structure ks s, structure of s	e and texture of igneous	s rocks. Origin and 13 Hours ess and formation of 13 Hours
Processof formation of igneous re- mode of occurrence of igneous rock Unit III Classification of sedimentary rocks sedimentary rocks. Unit - IV Definition of metamorphism, type metamorphic rocks	s, structure of s	e and texture of igneous sedimentary rocks. Proce	s rocks. Origin and 13 Hours ess and formation of 13 Hours
Processof formation of igneous re- mode of occurrence of igneous rock Unit III Classification of sedimentary rocks sedimentary rocks. Unit - IV Definition of metamorphism, type	s, structure of s	e and texture of igneous sedimentary rocks. Proce	s rocks. Origin and 13 Hours ess and formation of 13 Hours

Subject Code	MP OE 1	IA Marks	30	
Number of Lecture Hours/Week	04	Exam Marks	70	
Total Number of Lecture Hours	52	Exam Hours	03	
Unit –I:		13 Hours		
Role of Mineral industry in National Economy. Strategic, critical and essential minerals.				
Renewable and non-renewable resources, Conservation of minerals, Metallic and non-				
metallic minerals. National Mineral policy				
Unit-II 13 Hour			13 Hours	
Study of the following mineral deposits of India with reference to mineralogy, Mode of				
occurrence, distribution and production: Iron, Manganese Chromium, Copper, Bauxite and				
Gold				
Unit –III: 13 Hour			13 Hours	
Study of minerals used in glass, cement, ceramic, fertilizer industries. Minerals used as				
insulators, minerals used in Chemical industry.				
Unit-IV 13 Hou			13 Hours	
Abrasive minerals. Pigments and fillers, Fuels: Coal and Petroleum.				

FOR III SEMESTER

MP OE3: INTRODUCTION TO MINE	RAL PROCI	ESSING	
Subject Code	MP OE 1	IA Marks	30
Number of Lecture Hours/Week	04	Exam Marks	70
Total Number of Lecture Hours	52	Exam Hours	03
Unit –I			13 Hours
Economics. Physical Properties of Ores an Definition of terms – Concentrate, Tailing Unit operations. Sampling: Definition, p sampling.	g, Middling, l	Recovery and Ratio of co	oncentration.
Unit-II			12 Hanna
Crushing: Purposes, Mechanism of crushing, types of crushers and their salient features. Grinding: Tumbling mills, Types of tumbling mills, open and closed circuit grinding operation. Liberation: Definition and importance of liberation studies and its analysis. Laboratory sizing. Industrial screens			13 Hours
Grinding: Tumbling mills, Types of tu	mbling mills	, open and closed circu	ent features. uit grinding
Grinding: Tumbling mills, Types of tu operation. Liberation: Definition and in	mbling mills	, open and closed circu	ent features. uit grinding
Grinding: Tumbling mills, Types of tu operation. Liberation: Definition and in Laboratory sizing, Industrial screens	mbling mills	, open and closed circuliberation studies and	ent features. uit grinding its analysis. 13 Hours
Grinding: Tumbling mills, Types of tu operation. Liberation: Definition and in Laboratory sizing, Industrial screens Unit –III:	mbling mills	, open and closed circuliberation studies and	ent features. uit grinding its analysis. 13 Hours

Floatation, Magnetic Separation, Electro static Separation and Agglomeration

MP OE4: IRON AND STEEL MA	KING		
Subject Code	MP OE 1	IA Marks	30
Number of Lecture Hours/Week	04	Exam Marks	70
Total Number of Lecture Hours	52	Exam Hours	03
Unit- I:.		·	13 Hours
Iron Ore: Definition of ore, mineral,	, rock, gangue, tenor a	and grade of ore. B	rief studies on
Origin, occurrence and Distribution	of iron ore deposits of	f the world, India, a	nd Karnataka.
Types of Iron Ores, Mineralogy of Iron Ore and banded iron formations, Liberation Studies			
Unit-II 13 Hours			
Iron Ore Processing: Iron Ore washing, Gravity methods, jigging, H.M.S, Spiral,			
Classification, magnetic separation and flotation. Recent trends in iron ore processing			
including Iron Ore fines and slimes.	Agglomeration of Iron	Ore fines	
Unit-III 13 Hours			
Iron Making: Raw Materials for iron making, Stoichiometry. Conventional blast furnace			
iron making, temperature profiles of blast furnace. Iron making, sponge iron making.			
Unit-IV			13 Hours
Steel Making: Raw materials for steel making, liquid iron refining. Impurities of liquid iron			s of liquid iron
& and removal of carbon, silica, manganese, phosphorous, sulphur etc B.O.F.			

Annexure

GUIDELINES FOR REPORT WRITING

BoS/07-MAR-2019

Page **56** of **71**

For M.Tech (Mineral Processing) (Dissertation & Seminar Report) Applicable From Academic Year 2019 - 20

Department of Post Graduate Studies and Research in Mineral Processing Vijayanagara Srikrishandevaraya University- Post Graduate

Centre Nandihalli-Sandur

Phone No. Email-minerals@vskub.ac.in Fax No. Web-<u>www.vskub.ac.in</u>

1.0 PREAMBLE:

The content and the way of presentation of the Project/Dissertation report shows the efforts taken by the candidate(s) for his/her work. Therefore, proper attention shall be paid to the content of Project/Dissertation report which is being submitted in partial fulfillment of the requirements of the respective degree and it is imperative that a standard format be prescribed for the report. This document provides guidelines and standard format forseminar/project/dissertation report writing of UG/PG programs and it may be referred as report writing guide. Some material in this document may be of use in the preparation of any technical report.

2.0 ORGANISATION OF THE REPORT:

The report shall be presented in number of chapters starting with introduction and ending with conclusion. Each of the chapters should have precise title reflecting the contents of that chapter. A chapter can be divided and subdivided into sections and subsections so as to present the content discretely and with due emphasis. In addition to main material of the report; preliminaries, references, appendices etc should be included in the report.

2.1. Sequence of Contents:

The material should be placed and bound in following order:

i) **Preliminaries:** The following information should be furnished in the given sequence.

Top Sheet of transparent sheet Title page Certificate Declaration

- Acknowledgement
- Abstract
- Table of Contents
- List of Figures
- List of Tables
- Nomenclature
- Acronyms if any

ii) The Chapters (Main material):

Itshall be presented in number of chapters starting with introduction and ending with conclusion as explained in section 4.

- iii) Appendices:
- iv) References:

v) Publications:

3.0 PRELIMINARIES:

3.1. Title Page:

It is a first page of report. Try to find a title that clearly describes the work you have done and be as precise as possible. MentionDissertation/ Project /

Seminar title your name, guide's (and co-guide's) name, name of the department name of the institute, place, month and year of the submission of report. **Refer page no 9**.

3.2. Abstract:

Summarize the main points of the report on a separate page. Persons interested in the report after reading the title should be able to judge from the abstract whether the report is really interesting for them. So, briefly formulate the problem that has been defined / investigated, the solutions derived, the results that have been achieved, and your conclusions. The abstract should not occupy more than one page (about 150 to 200 words). It must contain the context/ relevance of the problem at hand, a description of what was done and a gist of the significant observations/ results. It's noteworthy that the abstract shall be prepared after project work is over and report is completed in all respect. This page should precede the Table of Content page.

3.3 Certificate and Declaration:

Both pages shall be in the unique format provided with this guide and duly signed by student, guide and all the authorities with date. **Refer page no 10 and 11.**

3.4 Acknowledgement:

Please keep this brief and resist the temptation of writing floweryProse Do include all those who helped you, e.g. other faculty / staff you consulted, colleagues who assisted etc. Acknowledgement shall be included only in the final report and not in phase I or phase II as the case may be.

3.5 Table of Contents (ToC): Refer page no 11

- It should list items in the following order.
- Certificate (before Table of Content (ToC))
- Declaration (before T`oC)
- Acknowledgement (before ToC)
- Abstract (before ToC)
- List of figures (1.1, 1.2, 1.3.., 2.1, 2.2, .. etc.) (after ToC)
- List of tables (1.1, 1.2, 1.3., 2.1, 2.2, .. etc.) (after ToC)
- Nomenclature (after ToC)
- Acronyms if any (after ToC)
- The chapters (1, 2, ... N, followed by the name of the chapter),
 - Sections within chapters (e.g. 1.1, 2.4, etc. + name)
 - Subsections within sections (e.g. 1.1.1 + name)
- Appendices (I, II, III, IV, .. etc. + name), if any
- References
- Publications if any
 - Do not include the table of contents itself in the ToC.
 - Use borderless table for ToC

3.6 List of Figures and Tables:

Tables and figures should be numbered and captioned. Each table or figure should be numbered using a two-level scheme, (chapter no).(table no) or (chapter no).(figure no). This number (e.g. Table 4.8, or Fig. 3.7) should be used whenever the table/figure is referred in the text. Each table/ figure should have a title/caption. An identical entry should exist in List of Tables or List of Figures respectively. Title of a table is given at the top of the table preceded by its number. Caption of a figure is given at the bottom of the figure preceded by its number. Figures and tables should appear as close as possible to their first occurrence/mention in the running text of the chapter these belong to; these must appear after the first mention and not before. Photocopied tables should not be included. Photocopied figures should be avoided as far as possible and if included they should be large enough and clear. If taken from any reference, the reference should be cited within the text as well as at the caption of the figure or table.

3.7 Nomenclature:

It is necessary whenever symbols are used. This is in order of English (i.e. Roman) letters (Uppercase followed by lowercase), Symbols in Greek letters (see Appendix for the alphabetical order of Greek letters), subscripts and superscripts used, Special Symbols, followed by acronyms (i.e., Abbreviations) if any; everything in alphabetical order. All entries in nomenclature should have appropriate units in SI system.

3.8 Numbering of Report:

Every page of the report other than the title page should be numbered. Pages of Certificate, Acknowledgement, Table of Contents, Nomenclature, List of Tables and List of Figures should be numbered with lower case Roman numerals (i, ii, iii, iv, ...etc.). From the first page of the first chapter onwards, all the pages should be numbered using Hindu-Arabic numerals (1, 2, 3, ... etc.). The page numbers should appear at the bottom center as it is appearing in this document.

4 The Chapters:

The number of chapters you need and their contents strongly depend on the topic selected and the subject matter to be presented. In general the following chapters may be included; however, it is your own report and you have to structure it according to the flow of overall logic and organization.

4.1 General Guidelines:

- Each chapter, section, subsection, etc. should have a title. An identical entry should exist in the ToC. Each chapter is numbered using Hindu-Arabic numerals: 1, 2, 3, ..
- Title with interrogative sentence should be avoided.

- The chapters may be structured in to sections and subsections. Sections within a chapter are numbered using a two-level scheme, (chapter no).(section no); for example, sections in chapter 3 are numbered 3.1, 3.2, ... Subsections within a section are numbered using a three-level scheme, (chapter no).(section no).(subsection no); for example, subsections in chapter 3, section 2 are numbered 3.2.1, 3.2.2, ... The sections and sub-sections must carry titles. Use different fonts for section titles and sub-section titles as specified in section 7.3.2 on page no 7.
- Presentation of your contributions should include formulation, derivations, description of experimental set-up, experimentaldata/measurements, designcalculations etc. For an experimental investigation, raw data must be available (preferably in an appendix). For aproject involving software development, user's manual, programmer'sanual, source code diskette/listing must be available. User's and programmer'smanuals are considered to be separate documents, distinctfrom your report.As mentioned previously, these could form appendices.
- The SI system of units should be used as far as possible.
- Results/ Discussion/ Comments: If there are too many aspects to be coveredthenorganize them in a logical manner.

4.2 Introduction:

In this chapter give introductory information about your project/dissertation/seminar and formulate the problem that you want to address the statement of a problem and its relevance, the initial goals you had, etc. without going into details. Here you also describe the structure of the rest of your report, indicating which chapter will address which issue.

4.3 Literature Survey:

It should be as exhaustive as possible but related to your work. The discussion on the literature may be organized under a separate heading & titled suitably. Summarize the literature that you have read. Rather than literally copying the texts that you have read, you should present your own interpretation of the theory. This will help you in developing your own thinking discipline and technical language. The last part of this section must contain a brief mention of the gaps in the literature and a justification for undertaking your study/project. Do not be too general. Avoid writing essays on historical developments.

4.4 Theory-Oriented Chapters:

The basic theory necessary to formulate the subject matter may be presented under this chapter & titled suitably.

4.5 Practice-Oriented Chapters:

Depending on the work that you have done, it might be important to write about the system specifications/design, practical details, system behavior and characteristics and cross links of the selected topic etc.(May be one or two chapters) eg Hardware Design, Software Development, Results and Discussion etc.

4.6 Conclusions:

This is one of the most important chapters and should be carefully written. It should be broadly divided as objective or introduction, conclusions and future scope. Here you evaluate your study, state which of the initial goals was reached and which not, mention the strong and weak points of your work, etc. You may point out the issues recommended for future research. State these clearly, in point-wise form if necessary, with respect to the original objective. Do not disguise "descriptions" of specific aspects, covered in the work as conclusions.

4.7 Equations:

Each equation should be numbered using a two-level scheme, (chapter no).(eq no). While typing, the equations should be centrally placed while equation numbers should be flush right. (LaTeX does this by default.) This number (e.g. 2.4, with 2 as chapter number and 4 as equation number) should be used (as Eqn. 2.4) whenever the equation is referred in the text. The equations should be clearly written. Symbols used in the equations should be explained immediately after the equation when they are referred first as well as in the nomenclature. SI units must be used throughout the report. Present equations in dimensionless form, wherever possible and appropriate.

4.8 Acronyms:

Avoid acronyms (short forms) in the report except the following standardones. Equation(s): Eq(s), Figure(s): Fig(s). The words 'Table' and 'Chapter' are not shortened. If any other acronyms have to be used, list them separately at the beginning (after nomenclature). Mention the acronym in the brackets following its full form, whenever it occurs first. The first word in a sentence shall never be a short form.

5.0The Appendices:

Appendices are useful for those things that you consider important,but that do not fit in the main presentation of your work and breaks the regular flow. There could be several reasons for using appendices: the material is too long and has too many details (e.g. the specifications of instruments or 4equipment), you have formulated a theorem, the proof of which is too long for the main text, you want to include a user manual for the software that you have come across (strongly recommended!), you want to present the schematics of a hardware design, experimental set-up, etc. Appendices tend to occupy many pages. Think carefully on what you want to include. For example, complete listings of the source code that you have written are seldom interesting. Instead, add a flow chart. Avoid describing the test set-up where a schematic can be easily used. Appendices are numbered as Appendix I, Appendix II, etc. or using capital English letters e.g. Appendix A, Appendix B, etc. If you have just one appendix, then it is not numbered. Alphabetical order of Greek letters: Alpha, beta, gamma, delta, epsilon, zeta, eta, theta, iota, kappa, lambda, mu, nu, xi, omicron, pi, rho, sigma, tau, upsilon, phi, chi, psi, omega. Since reference can be drawn to published/unpublished literature in the appendices these should precede the reference (or Literature Cited) section.

6.0 References:

This should follow appendices, if any, otherwise the conclusion chapter. This chapter is also referred as "Literature Cited". Each entry in the reference has a label. All references cited in the text-body should be there in the Reference list and vice versa. Established acronyms may be used. e.g. AC, DC, ASME, ASTM, IIT, Jnl, etc., provided there is no likelihood of any confusion.

• Labeling: One of the following systems can be used for labeling the cited entries.

System 1:

A numeric label arranged in an order of citation in the main text. This label is used in square brackets or as superscript at the point of citation, e.g. [34]. The references should be arranged together in the order of this numeric label.

System 2:

A label derived from the authors name and the year of publication. For entries with 2 authors, include the surnames of both the authors followed by the year of publication. For entries with multiple authors, include the surnames of the first author followed by 'et al.' and the year of publication. This label is used in round brackets at the point of citation, e.g. (Taylor, 1982) or (Taylor et al., 1982) or (Taylor and Morgan, 1982).

- The references should be arranged together in the alphabetical order of the author surname (1st priority) and the year of publication (2nd priority).
- The reference list thus compiled together should be included after Appendices. In the reference list, you should provide the details of each entry in the following manner. These details differ depending on the type of bibliographic entry.

For a book:

name of the authors, title, publisher, city of publication and year of publication. (Taylor J. R., An Introduction to Error Analysis, Oxford University Press, Mill Valley, CA,USA, 1982

For an article in a journal:

name of the authors, title, name of the journal, volume (issue number), range of pages, and year. (Bandyopadhyay S., Bera N.C. and Bhattacharyya S., 'Thermoeconomic Optimization of Combined Cycle Power Plants', Energy Conver. Mgmt., 42(3), 359-371, 2001.)

For an article in conference proceedings: name of the authors, title, name of conference, editors (if present), range of pages and year. (Kedare S.B. 'Optics, Design, Performance and Economics of the Dynamic Fresnel Paraboloid Reflector Concentrator Dish

with Point Focus for High Temperature Solar Thermal Applications', Proceedings of National Renewable Energy Convention '99, Sawhney R.L. (Ed.), 9-15, 1999.)

- A chapter in a book: authors of the chapter, title of the chapter, editors of the book, title of the book, publisher, city of publication, range of pages, and year of publication.(Bilgen E., Industrial Solar Power Stations, Veziroglu T.N. (Ed.), Solar Energy and Conservation: Technology, Commercialization, Utilization, Volume2, Pergamon Press, NY, USA, 665- 673,1978)

- A report: authors, title, university/company, report number, year. (Ahmed K., Renewable Energy Technologies, World Bank Technical Paper Number 240, 1994)

- A Ph.D. or Masters Thesis: author, title, department, university, year. (Kedare S.B.,

'Investigations on a Reciprocating Wind Machine', Ph.D. Thesis, Dept. of Mechanical Engineering, IIT, Mumbai, 1991)

- A manual / handbook / standards : company name (if there are no authors), title, reference number, year. (British Standards Institution, Specification for Steel girder bridges, BS153 : Parts 3B & 4 : 1972, 1972)

- A web-site : Author or Organization, name of the site, complete address of the site, date visited (Danish Wind Industry Association, Aerodynamics of Wind Turbines: Lift, http://www.windpower.org/tour/wtrb/lift.htm, Aug 16, 2002)

• **Bibliography:** In a few exceptional cases, it is useful to suggest a list of publications for background reading. These are not cited anywhere in the text. This list can be included as 'Bibliography'. It should follow 'References' on a fresh page.

7. Binding: The report shall be hard cover bound in leather or rexin (Blue colour for M.Tech and Black for PhD.,). The front cover shall be same as top cover page and all lettering shall be embossed in gold. In addition, emboss the title of project/dissertation/seminar, name of programme and month & year of submission on side strip of the report. At the time of final submission,

- 7.1 Submission: Students shall follow the following guidelines for final submission.
 - First, get draft copy of your report approved and certified by your guide and HoD.
 - Submit only one copy per group of above report in spiral binding form to the Principal through HoD of your department on or before due date.
 - Once the report is approved by the Chairman/Guide then submits 4 number of copies of final report in hard bound form.

• Instructions for Top Cover/Title Page

- 1. **Title of dissertation/project/seminar:** All letters capital, font size 18, Bold, centrally aligned
- 2. Name of the programme, student,guide, department and college : All letters capital, font size 12, Bold, centrally aligned
- 3. **Matter, designation, examination number:** Title case, font size 12, Bold. Examination number may not be specified on cover page.

4. Do not write designation of guide on top cover/title page.

• Instructions for Certificate Page

- 1. College Name: All letters capital, font size 14, Bold, centrally aligned
- 2. Name of the department: Title case, font size 12, Bold, centrally aligned
- 3. Certificate: All letters capital, font size 12, Bold, Underlined, centrally aligned
- 4. Title of Dissertation/Project/Seminar: All letters capital, font size 12, Bold.
- 5. **Name of student:** All letters capital, font size 12, Bold.
- 6. Name and designation of guide, HoD, Principal : Title case, font size 12
- 7. **Matter :** Title case, font size 12, Bold.
- Instructions for Declaration Page
- 1. Declaration: All letters capital, font size 14, Bold, centrally aligned
- 2. Title of Dissertation/Project/Seminar: All letters capital, font size 12, Bold
- 3. Name of student: All letters capital, font size 12
- 4. Name and designation of guide: Title case, font size 12,
- 5. Matter: Sentencecase, font size 12. (Don't write exam/roll no on this page.)

GUIDELINES FOR DISSERTATION/ SEMINAR REPORT WRITING

Appendix I Format for TOP COVER/TITLE PAGE:

Hardbound reports should have the following printed/embossed on the cover: Also the same is to be repeated as first page within.

TITLE M.Tech DISSERTATION

Submitted to Department of Post Graduate Studies and Research in Mineral Processing In Partial Fulfillment of the Requirements for The Degree of Master of Technology In Mineral Processing.

> By Candidate Name (Reg Number

)

Guide "Guide Name"

DEPARTMENT OF POST GRADUATE STUDIES AND RESEARCH IN MINERAL PROCESSING MAY 2013

Appendix II Format for CERTIFICATION PAGE

CERTIFICATE

College Logo

This is to certify that the project/ dissertation entitled, **"Title of report"**, which is being submitted herewith for the award of M.Tech in Mineral Processing is the result of the work completed by **Student Name** under my supervision and guidance and the same has not been submitted elsewhere for the award of any degree.

(Prof.)

(Name)

Gudie Department Head of

Examiner

1

Appendix III Format for DECLARATION PAGE

DECLARATION

I hereby declare that the project/ dissertation entitled, **"Title**" was carried out and written by me/ us under the guidance of Prof. , Professor, Department of Post Graduate Studies and Research in Mineral Processing, VSKUB PG Centre Nandihalli. This work has not been previously formed the basis for the award of any degree or diploma or certificate nor has been submitted elsewhere for the award of any degree or diploma.

Place: Date:

Appendix IV Format for Table of Contents

CONTENTS

Chapter No	Title	Page No
	Certificate	i
	Declaration	ii
	Acknowledgement	iii
	Abstract	iv
	List of Figures	vi
	List of Tables	vii
	Nomenclature	viii
	Acronyms	ix
1	Introduction	
	1.1 (Decide subtitles appropriately)	
	1.2	
	1.3 Scope of the work	
	1.4 Organization of report	
2	Literature Review	
	2.1 (Decide subtitles appropriately)	
	2.2	
	2.3 Concluding remarks/ Comments	
3	Theory-Oriented Chapters (Decide title and subtit	les
	appropriately)	
	3.1	
	3.2	
	3.2.1	
	3.2.2	
4	3.3 Deseties Oriented Charters (Deside title and relativ	1
4	Practice-Oriented Chapters (Decide title and subtit	les
	appropriately) 4.1	
	4.1	
	4.2.1	
	4.2.2	
5	Result and Discussion(Decide title and subtitles appropriately)	
5	5.1	
	5.2	
	5.3	
6	Conclusion	
	6.1 Introduction	
	6.2 Conclusions	
	6.3 Future Scope	
	Appendix/ Appendices	
	References	
	Publications	

LIST OF FIGURES

Figure No.	Title	Page No.
2.1	Block diagram of security system for military vehicles	12

LIST OF TABLES

Table No.	Title	Page No.
3.1	Typical parameter values of micro-controller 89C52	17

Note: List of Figures and List of Tables shall de on separate pages.

M.Tech (Mineral Processing) CBCS Programme syllabus for regular 6 semester and 4 semester lateral entry is effective from the year 2019-20. The syllabus was scrutinized and recommended in BOS in Mineral Processing held on 07.03.2019, at the Department of Studies and Research in Mineral Processing VSKU Post Graduate Centre, Nandihalli-Sandur; by the following BOS members

Name	Designation	Signature with Date
Prof. S.J. Gopalkrishna	Chairman BOS	logist ef 103/2019
Prof. P.C. Naganoor,	Member	peganot
Prof. M.R. Patil	Member	018 polis 713/19
Dr. P. Sharathkumar	Member	P. Shandukener
Prof. C. Venkataiah'	Member	Querear : 3/3/19
Prof. M.D. Khanadali	Member	701-761
Prof. G. Chandrakanth Dept. of Applied Geology Kuvempu University, Shivamogga	External Member	Gent 78/2019
Prof. M. Aruna Dept. of Mining Engineering, NITK Surathkal	External Member	Qu +(3)2019