VIJAYANAGARASRIKRISHNADEVARAYAUNIVERSITY Department of UG Studies and Research in Microbiology

Jnanasagaracampus, Vinayakanagara, Cantonment, Ballari-583105

Syllabus

for

BACHELOR OF SCIENCE

As per NEP-2020

With effect from 2021-2022

Page1of8

Title of the Course: B.Sc.Microbiology.

Program Outcomes:

Competencies need to be acquired by the candidate securing B.Sc. (Basic) or B.Sc. (Hons) By the end of the program the students will be able to:

1. Knowledge and understanding of concepts of microbiology and its application in pharma, food, agriculture, beverages, nutraceutical industries.

2. Understand the distribution, morphology and physiology of microorganisms and demonstrate the skills in aseptic handling of microbes including isolation, identification and maintenance.

3. Competent to apply the knowledge gained for conserving the environment and resolving the environmental related issues.

4. Learning and practicing professional skills in handling microbes and contaminants in laboratories and production sectors.

5. Exploring the microbial world and analyzing the specific benefits and challenges.

6. Applying the knowledge acquired to undertake studies and identify specific remedial measures for the challenges in health, agriculture, and food sectors.

7. Thorough knowledge and application of good laboratory and good manufacturing practices in microbial quality control.

8. Understanding biochemical and physiological aspects of microbes and developing broader perspective to identify innovative solutions for present and future challenges posed by microbes.

9. Understanding and application of microbial principles in forensic and working knowledge about clinical microbiology.

10. Demonstrate the ability to identify ethical issues related to recombinant DNA technology, GMOs, intellectual property rights, biosafety and biohazards.

11. Demonstrate the ability to identify key questions in microbiological research, optimize research methods, and analyze outcomes by adopting scientific methods, thereby improving the employability.

12. Enhance and demonstrate analytical skills and apply basic computational and statistical techniques in the field of microbiology

LEARNING OUTCOMES

- Demonstrate skills as per National Occupational Standards (NOS) of "Lab Technician/ Assistant" Qualification Pack issued by Life Sciences Sector Skill Development Council LFS/Q0509, Level 3.
- Perform microbiology and analytical techniques. Knowledge about environment, health, and safety (EHS), good laboratory practices (GLP), good manufacturing practices (GMP) and standard operating procedures (SOP)
- Demonstrate professional skills at work, such as decision making, planning, and organizing, Problem solving, analytical thinking, critical thinking, and documentation.
- 1. Principles which underlies sterilization of culture media, glassware and plastic ware to be used for microbiological work.
- 2. Principles of a number of analytical instruments which the students have to use during the study and also later as microbiologists for performing various laboratory

manipulations.

- 3. Handling and use of microscopes for the study of microorganisms which are among the basic skills expected from a practicing microbiologist. They also get introduced a variety of modifications in the microscopes for specialized viewing.
- 4. Several separation techniques which may be required to be handled later as microbiologists.

Pedagogy :

The general pedagogy to be followed for theory and practicals are as under. Lecturing, Tutorials, Group/Individual Discussions, Seminars, Assignments, Counseling, Remedial Coaching. Field/Institution/Industrial visits, Hands on training, Case observations, Models/charts preparations, Problem solving mechanism, Demonstrations, Project presentations, Experiential documentation and Innovative methods.

Active learning as per LSSSDC (NSDC) LFS/Q0509 guidelines, at skill training Level 3. Case studies about application of microbial biomolecules in various industries. Seminar on topics of microbial biochemistry

B.Sc. in Microbiology

Semester-1			
Subject Title: Fundamentals of Microbiology			
Credits: 04	Category: DSC1		
Contact Hours: 56	Marks: 40+60=100		

C 4 Т

Course Outcomes:

By the end of the course the student will be able to:

- Understand the major contributions of scientists in microbiology, origin of • microorganisms
- Perform Staining, sterilization and preservation techniques of microorganisms. •
- Gain knowledge in the organisation and reproduction of prokaryotic microorganisms •
- And eukaryotic Microorganisms •
- Gain skills in handling Instruments in performing Microbial experiments. •

Module I	Historical development, major contributions, origin of		11hrs
	microorganisms		
	Historical development of microbiology -Theory of spontaneous genera	tion, Bi	ogenesis and
	Abiogenesis. Contributions of Anton Von Leeuwenhoek, Louis Pasteur,	Robert]	Koch, Joseph
	Lister and Edward Jenner, Alexander Fleming, Martinus Beijirinic,	Segei	Winogrodsky,
	EleiMetechnikoff. Contributions of Indian scientists in the field of	Microbi	ology . Fossil
	evidences of microorganisms. Primitive cells and evolution of microorgani	isms.	
Module II	Staining, sterilization and preservation of microorganisms		11hrs
	Staining: Nature of stains, principles, mechanism, methods and types	of stair	ning- Simple,
	Differential-Gram staining, Acid fast staining, staining of capsule, c	ell wall	l, endospore,
	inclusion bodies. Sterilization: Principles, types and techniques, Physical	l, chemi	cal, radiation
	and mechanical Preservation of microorganisms: Methods of preservation	on of mi	croorganism,
	slant culture, stab culture, soil culture mineral oil overlaying, glycerol pres	ervation	
Module III	Types, structure, organisation and reproduction of prokaryotic		12hrs
	microorganisms		
	Overview of Prokaryotic Cell Structure: Size, shape, arrangement. Diagra	um of Pr	alrominatio call
			okaryotic cen
	organisation, cell wall structure and Gram staining, cell membrane; Ba	cterial a	ind Archaeal,
	organisation, cell wall structure and Gram staining, cell membrane; Ba Cytoplasmic matrix- Cytoskeleton, ribosome, inclusion granules: Comp	cterial a osition	and function.
	organisation, cell wall structure and Gram staining, cell membrane; Ba Cytoplasmic matrix- Cytoskeleton, ribosome, inclusion granules: Comp Nuclear Materials – Bacterial chromosomes structure (its differences	cterial a osition a with th	and Archaeal, and function. e Eukaryotic
	organisation, cell wall structure and Gram staining, cell membrane; Ba Cytoplasmic matrix- Cytoskeleton, ribosome, inclusion granules: Comp Nuclear Materials – Bacterial chromosomes structure (its differences chromosome); Extra Chromosomal materials. Components external to cell	cterial a osition a with th wall- ca	and Archaeal, and function. e Eukaryotic apsule, slime,
	organisation, cell wall structure and Gram staining, cell membrane; Ba Cytoplasmic matrix- Cytoskeleton, ribosome, inclusion granules: Comp Nuclear Materials – Bacterial chromosomes structure (its differences chromosome); Extra Chromosomal materials. Components external to cell s-layer, pilli, fimbriae, flagella; structure, motility, chemotaxis. Bacterial E	cterial a osition a with th wall- ca Endospor	nd Archaeal, and function. e Eukaryotic apsule, slime, re - Examples
	organisation, cell wall structure and Gram staining, cell membrane; Ba Cytoplasmic matrix- Cytoskeleton, ribosome, inclusion granules: Comp Nuclear Materials – Bacterial chromosomes structure (its differences chromosome); Extra Chromosomal materials. Components external to cell s-layer, pilli, fimbriae, flagella; structure, motility, chemotaxis. Bacterial E of spore forming organisms, habitats, function, formation and germinat	cterial a osition a with th wall- ca Endosportion. Rep	and Archaeal, and function. e Eukaryotic apsule, slime, re - Examples production in
	organisation, cell wall structure and Gram staining, cell membrane; Ba Cytoplasmic matrix- Cytoskeleton, ribosome, inclusion granules: Comp Nuclear Materials – Bacterial chromosomes structure (its differences chromosome); Extra Chromosomal materials. Components external to cell s-layer, pilli, fimbriae, flagella; structure, motility, chemotaxis. Bacterial E of spore forming organisms, habitats, function, formation and germinat bacteria and bacterial cell cycle.	cterial a osition a with th wall- ca Endospor ion. Rep	and Archaeal, and function. e Eukaryotic apsule, slime, re - Examples production in

	Over view of eukaryotic cell structure: General structure and types of coverings and cell membrane . Structure and function of Cytoplasmic Structure and function; single Membrane organelles- Endoplasmic reticu Lysosome, Vesicles and Ribosomes; Double Membrane organelles- Nu and Chloroplast: Structure and Functions; Peroxisomes; Organelles of movement of flagella and cilia. Reproduction in Eukaryotic microorganism	E cells; E matrix- Ilum, Go cleus, M totility- ns	External cell cytoskeleton: olgi complex, fitochondrion Structure and
Module V	Instrumentation in Microbiology		10hrs
	Microscope and its modifications – Light, phase contrast and interfective Confocal, Electron (TEM and SEM), Electron tunneling and AFM. We operation of instruments used in microbiology laboratory- Autoclave, Lan Incubator, Hot air oven, Orbital shaker, pH meter, Spectrophotometer, Cer	erence, Vorking ninar air ntrifuges	Fluorescence, principle and flow system,

B.Sc in	Microbiology;	Semester-I
---------	---------------	------------

Subject Title: Practical: Fundamentals of Microbiology Lab		
Credits: 02	Category: DSC1P	
Total Contact Hours: 56	Marks:25+25=50	

Course Outcomes:

By the end of the course the student will be able to:

- Perform Staining, sterilization and preservation techniques of microorganisms.
- Gain skills in handling Instruments in performing Microbial experiments.
- 1. Microbiological laboratory standards and safety protocols.
- 2. Standard aseptic conditions of Microbiological laboratory.
- 3. Operation and working principles of Light/ Compound microscope.
- 4. Applications of basic microbiological tools (Pipettes, Micropipette, Bunsen burner, Inoculation loop, Spreader).
- 5. Demonstration and observations of microorganisms from natural sources under light microscope (Bacteria, Yeast, Protozoa and Algae).
- 6. Demonstration of bacterial motility by hanging drop method.
- 7. Simple staining.
- 8. Differential staining Gram staining.
- 9. Acid fast staining.
- 10. Structural staining Flagella and Capsule.
- 11. Bacterial endospore staining.
- 12. Staining of reserved food materials.
- 13. Staining of fungi by Lactophenol cotton blue.
- 14. Negative staining.

Text Books:

- 1. Prescott, Harley, Klein's Microbiology, J.M. Willey, L.M. Sherwood, C.J. Woolverton, 7th International, edition 2008, McGraw Hill.
- 2. Foundations in Microbiology, K. P. Talaro, 7th International edition 2009, McGraw Hill.
- 3. A Textbook of Microbiology, R. C. Dubey and D. K. Maheshwari, 1st edition, 1999, S. Chand & Company Ltd.
- 4. Brock Biology of Microorganisms, M.T.Madigan, J.M.Martinko, P. V. Dunlap, D. P. Clark-12th edition, Pearson International edition 2009, Pearson Benjamin Cummings.
- 5. Microbiology An Introduction, G. J.Tortora, B. R.Funke, C. L. Case, 10th ed. 2008, Pearson Education.
- 6. General Microbiology, Stanier, Ingraham et al, 4th and 5th edition 1987, Macmillan education limited.
- 7. Microbiology- Concepts and Applications, Pelczar Jr, Chan, Krieg, International ed, McGraw Hill.
- 8. Schlegel, H.G. 1995.General Microbiology. Cambridge University Press, Cambridge, 655 pp.

Reference Books:

- 1. Alexopoulos, C.J., Mims, C.W., and Blackwell, M. 2002. Introductory Mycology. John Wiley and Sons (Asia) Pvt. Ltd. Singapore. 869 pp.
- 2. Atlas, R.M. 1984. Basic and practical microbiology. Mac Millan Publishers, USA. 987pp.

- 3. Black, J.G. 2008. Microbiology principles and explorations. 7edn. John Wiley and Sons Inc., New Jersey 846 pp.
- 4. Toratora, G.J., Funke, B.R. and Case, C.L. 2007. Microbiology 9th ed. Pearson Education Pte. Ltd., San Francisco. 958pp.
- 5. Pommerville, J.C. Alcamo's Fundamentals of Microbiology. Jones and Bartlett Pub..Sudburry, 835 pp.

B. Sc. Microbiology; Semester-I

Subject Title: Microbes in Waste to Wealth

Sub.Code:21BSC101MB1	Marks:60+40=100
Credits:03	Category:OEC1

Course Outcomes: The students completing the course will have the ability to

- Discuss issues related to recycling and resource recovery from wastes and wastewater
- Develop management plans for fly ash, plastic wastes ,agriculture waste,
- Recover biofuel from wastes and biomass

mouulei	Introduction to Microbes	10hrs
Properties, of prokary microorgan cycles. Ap environmen	classification and Types, structure, organization and reproduction votic and eukaryotic microorganisms. Functional role of sms. Interactions with living and nonliving things, Biogeochemical plications of Microorganisms in industry, food, Agriculture, t and in Health.	
ModuleII	Introduction to Wastes	12hrs
Problem of Reduction S Principle (P Scenario in Capacity, F Sustainable Reduction Community	Wastes, Types of Solid Waste, Waste Characterization ,Source Solid Waste Reduction, Waste reduction strategies - Polluter Pays PP), Assimilative Capacity and the Precautionary Principle, World Scrap Trade Extended Producer Responsibility (EPR), Carrying Precautionary Principle .Waste Reduction Towards Zero Waste Living, Waste Reduction at Business (Producer) Level, Waste at Individual Level: Zero Waste Living, Waste Reduction at Level.	
Module III	Recycling of waste	10hrs
Module III Recycle ar Precautions Plastics, Pre	Recycling of waste ad Reuse of Waste Re-use, General Process of Recycling, for Recycling –Aluminium, Glass, Precautions while Recycling of acautions while Recycling paper Amplifying benefits from waste	10hrs
Module III Recycle ar Precautions Plastics, Pre Module IV	Recycling of waste ad Reuse of Waste Re-use, General Process of Recycling, for Recycling –Aluminium, Glass, Precautions while Recycling of becautions while Recycling paper Amplifying benefits from waste Agriculture Wastes Waste To Wealth	10hrs 12hrs

Module V	Municipal solid waste ,Industrial waste to wealth	12hrs
Municipal	Solid waste. Sources, domestic, industrial and Industrial wastes-	
Mineral wa	stes In dentification waste Minimizing options -Recovery and	
Recycle- In	ncineration Energy from waste- Pyrolysis, chemical processing-	
Legislative	measures for garbage disposal. flyash - Nature- Direct	
Replacemen	nt of Cement- Waste Land Development- Soil Amendment to grow	
Crops- Util	ization of Flyash In Afforestation, Limitation of Land Application	
of Fly Ash	Amount and types of plastic waste - Recycling of plastic waste-	
cement ma	nufacture from industrial solid waste - Paper industry waste -	
Calcium ca	rbide industry waste, textile industry waste, sugar industry waste,	
palm oil inc	lustry waste, Alcohol industry waste, Ecotourism.	

Text Books:

- Agarwal S.K. "Wealth from Waste", Bhushannangia, APH Publishing Corporation, New Delhi, 2005
- Nemerow N.L., "Industrial Water Pollution", Addison Wesley Publishing Company inc., USA, 1978

References Books:

- Wesley Eckenfelder Jr. W, Industrial water pollution control, McGraw Hill book Co, New Delhi, 1989.
- Mahajan S.P. "Pollution Control in process industries", Tata

McGraw Hill Publishing Co Ltd., New Delhi, 1989.