

# VIJAYANAGARA SRI KRISHNADEVARAYA

## UNIVERSITY

## JNANASAGARA CAMPUS, BALLARI – 583 105

# Department of Studies in Physics

SYLLABUS

Master of Science (I-IV Semester)

With effect from 2021-22



### VIJAYANAGARA SRI KRISHNADEVARAYA UNIVERSITY

#### JNANASAGARA CAMPUS, BALLARI-583105

### **Department of Studies in Physics**

Programme: Master of Science (M.Sc.) in Physics

Duration: 2 Years (4 semesters)

#### **Programme Overview:**

Master of Science (M.Sc.) in Physics programme is designed to prepare students for a career in teaching, research or industry by introducing them to a wide range of concepts in physics and training in techniques applicable in various research areas. The programme aims to provide basic understanding of principles & concepts of physics through well structured teaching-leaning process and experimentation to understand the new dimensions of physics.

#### **Programme Educational Objectives (PEOs):**

After 3-4 years of completion of the programme the graduates will be able to:

- 1. Demonstrate competency in physics to solve and analyse contemporary problems.
- 2. Demonstrate research skills which might include laboratory techniques, numerical techniques and computer programming.
- 3. Occupy positions in academic/research institutions / industry.
- 4. Demonstrate leadership qualities to achieve professional and organizational goals with commitment to ethical standards and team spirit.

#### **Programme Outcomes (POs):**

At the end of the programme the students will be able to:

- 1. Apply the domain knowledge to solve practical problems.
- 2. Apply the mathematical techniques to interpret behavior of physical systems.
- 3. Demonstrate the ability to design & execute experiments, anlyse and interpret the results.
- 4. Demonstrate the ability to propose and execute a research project, and ethically report the results with concern for society and environment.
- 5. Work in a group to execute a project and contribute as an individual.
- 6. Effectively communicate the concepts, applications and research results in physics (both written and oral).
- 7. Develop lifelong learning habits by continuously updating advances in physics / science.



### VIJAYANAGARA SRI KRISHNADEVARAYA UNIVERSITY

Distribution of Courses/Papers in Postgraduate Programme as per Choice Based Credit System (CBCS) in

### **Department of Studies in Physics**

### M.Sc. I - SEMESTER

| Semester | Category                   | Subject code | Title of the Paper                             |    | Marks |       | T<br>ho | eachii<br>urs/w | ng<br>eek | Credit | Duration of<br>exams |
|----------|----------------------------|--------------|------------------------------------------------|----|-------|-------|---------|-----------------|-----------|--------|----------------------|
|          |                            |              |                                                | IA | SEE   | Total | L       | Т               | P         |        | (Hrs)                |
|          | DSC1                       | 1PHY1C1L     | Mathematical Methods of Physics                | 30 | 70    | 100   | 4       | -               | -         | 4      | 3                    |
|          | DSC2                       | 1PHY1C2L     | Classical Mechanics                            | 30 | 70    | 100   | 4       | -               | -         | 4      | 3                    |
|          | DSC3                       | 1PHY1C3L     | Atomic, Molecular & Optical<br>Physics         | 30 | 70    | 100   | 4       | -               | -         | 4      | 3                    |
|          | DSC4                       | 1PHY1C4L     | Electronics                                    | 30 | 70    | 100   | 4       | -               | -         | 4      | 3                    |
| FIRST    | SEC1                       | 21PHY1S1LP   | Design of Electrical &<br>Electronics Circuits | 20 | 30    | 50    | 1       | -               | 2         | 2      | 2                    |
|          | DSC3P1                     | 1PHY1C3P     | Atomic, Molecular & Optical<br>Physics Lab     | 20 | 30    | 50    | -       | -               | 4         | 2      | 4                    |
|          | DSC4P2                     | 1PHY1C4P     | Electronics Lab                                | 20 | 30    | 50    | -       | -               | 4         | 2      | 4                    |
|          | DSC1T1                     | 21PHY1C1T    | Mathematical Methods of<br>Physics             | 20 | 30    | 50    | -       | 2               | -         | 2      | 2                    |
|          | Total Marks for I Semester |              |                                                |    |       | 600   |         |                 |           | 24     |                      |

### M.Sc. II-SEMESTER

| Somostor | Catagory                    | Subject and  | Title of the Deper                                 |    | Marks |       | Teaching<br>hours/week |   |   | Credit | Duratio<br>n of |
|----------|-----------------------------|--------------|----------------------------------------------------|----|-------|-------|------------------------|---|---|--------|-----------------|
| Semester | Category                    | Subject code | The of the Paper                                   | IA | Sem.  | Total | L                      | Т | Р | Creun  | exams           |
|          |                             |              |                                                    |    | Exam  |       |                        |   |   |        | (Hrs)           |
|          | DSC5                        | 21PHY2C5L    | Computational Physics                              | 30 | 70    | 100   | 4                      | - | - | 4      | 3               |
|          | DSC6                        | 21PHY2C6L    | Quantum Mechanics                                  | 30 | 70    | 100   | 4                      | - | - | 4      | 3               |
|          | DSC7                        | 21PHY2C7L    | Condensed Matter Physics                           | 30 | 70    | 100   | 4                      | - | - | 4      | 3               |
|          | DSC8                        | 21PHY2C8L    | Nuclear Physics                                    | 30 | 70    | 100   | 4                      | - | - | 4      | 3               |
| SECOND   | SEC2                        | 21PHY2S2LP   | Model based Design of<br>Physical Devices/ Systems | 20 | 30    | 50    | 1                      | - | 2 | 2      | 2               |
|          | DSC5P3                      | 21PHY2C5P    | Computational Physics Lab                          | 20 | 30    | 50    | -                      | - | 4 | 2      | 4               |
|          | DSC7P4                      | 21PHY2C7P    | Condensed Matter Physics<br>Lab                    | 20 | 30    | 50    | -                      | - | 4 | 2      | 4               |
|          | DSC8P5                      | 21PHY2C8P    | Nuclear Physics Lab                                | 20 | 30    | 50    | -                      | - | 4 | 2      | 4               |
|          | Total Marks for II Semester |              |                                                    |    |       | 600   |                        |   |   | 24     |                 |

### M.Sc. III-SEMESTER

| Semester | Catego  | Subject code   | Title of the Paper                             | Marks |     | Marks Teaching<br>hours/week Credit |   | Teaching<br>hours/week |   | Duration |       |
|----------|---------|----------------|------------------------------------------------|-------|-----|-------------------------------------|---|------------------------|---|----------|-------|
| Semester | ry      | Subject coue   | The of the Luper                               | IA    | SEE | Total                               | L | T                      | P |          | (Hrs) |
|          | DSC9    | 21PHY3C9L      | Thermal and Statistical Physics                | 30    | 70  | 100                                 | 4 | -                      | - | 4        | 3     |
|          | DSC10   | 21PHY3C10L     | Analytical Techniques &                        | 30    | 70  | 100                                 | 4 | -                      | - | 4        | 3     |
|          | DSCIU   |                | Instrumentation                                |       |     |                                     |   |                        |   |          |       |
|          |         | 21PHY3E1AL     | A. Advanced Condensed Matter                   | 30    | 70  | 100                                 | 4 | -                      | - | 4        | 3     |
|          | DODI    |                | Physics                                        |       |     |                                     |   |                        |   |          |       |
|          | DSEI    | 21PHY3E1BL     | B. Advanced Nuclear Physics                    |       |     |                                     |   |                        |   |          |       |
|          |         | 21PHY3E1CL     | C. Materials Science                           | 1     |     |                                     |   |                        |   |          |       |
|          | DSE2    | 21PHY3E2AL     | A. Radiation Physics                           | 30    | 70  | 100                                 | 4 | -                      | - | 4        | 3     |
|          |         | 21PHY3E2BL     | B. Optical Spectroscopy                        |       |     |                                     |   |                        |   |          |       |
| THIRD    |         | 21PHY3E2CL     | C. Renewable Energy Physics                    |       |     |                                     |   |                        |   |          |       |
|          | GEC1    | 21PHY3G1AL     | A. Nanomaterials                               | 20    |     |                                     |   | -                      | - | 2        | 2     |
|          |         | 21PHY3G1BL     | B. Astrophysics                                |       | 30  | 50                                  | 2 |                        |   |          |       |
|          |         | 21PHY3G1CL     | C. Biophysics                                  |       |     |                                     |   |                        |   |          |       |
|          | SEC3    | 21PHY3S3LP     | Research Methodology                           | 20    | 30  | 50                                  | 1 | -                      | 2 | 2        | 2     |
|          | DSC9P6  | 21PHY3C9P      | Thermal and Statistical Physics Lab            | 20    | 30  | 50                                  | - | -                      | 4 | 2        | 4     |
|          | DSC10P7 | 21PHY3C10P     | Analytical Techniques &<br>Instrumentation Lab | 20    | 30  | 50                                  | - | -                      | 4 | 2        | 4     |
|          |         | Total Marks fo | r III Semester                                 |       |     | 600                                 |   |                        |   | 24       |       |

### M.Sc. IV-SEMESTER

| Semester | Category                           | Subject code | Title of the Paper           |    | Mark | 8        | To<br>hoi | eachii<br>urs/w | ıg<br>eek | Credit | Duration<br>of exams |
|----------|------------------------------------|--------------|------------------------------|----|------|----------|-----------|-----------------|-----------|--------|----------------------|
|          | Caregory                           |              |                              | IA | SEE  | Total    | L         | Τ               | P         |        | (Hrs)                |
|          | DSC11                              | 21PHY4C11L   | Advanced Quantum Mechanics   | 30 | 70   | 100      | 4         | -               | -         | 4      | 3                    |
|          | DSC12                              | 21PHY4C12L   | Electromagnetics             | 30 | 70   | 100      | 4         | -               | -         | 4      | 3                    |
|          | DSE3                               | 21PHY4E3AL   | D. Semiconductor Physics     | 30 | 70   | 100      | 4         | -               | -         | 4      | 3                    |
|          |                                    | 21PHY4E3BL   | E. Particle Physics          |    |      |          |           |                 |           |        |                      |
|          |                                    | 21PHY4E3CL   | F. Nanoscience               |    |      |          |           |                 |           |        |                      |
|          | DSE4                               | 21PHY4E4AL   | A. Lasers and Optical fibers | 30 | 70   | 100      | 4         | -               | -         | 4      | 3                    |
|          |                                    | 21PHY4E4BL   | B. Accelerator Physics       |    |      |          |           |                 |           |        |                      |
| FOURTH   |                                    | 21PHY4E4CL   | C. Astrophysics              |    |      |          |           |                 |           |        |                      |
|          | GEC2                               | 21PHY4G2AL   | A. Physics in Everyday Life  |    |      |          |           |                 |           |        |                      |
|          |                                    | 21PHY4G2BL   | B. Space                     |    |      |          |           |                 |           |        |                      |
|          |                                    |              | Research Programs in         | 20 | 20   |          |           |                 |           |        |                      |
|          |                                    |              | India and Abroad             | 20 | 30   |          |           |                 |           |        |                      |
|          |                                    | 21PHY4G2CL   | C. Exciting Inventions       |    |      | 50       | 2         | -               | -         | 2      | 2                    |
|          |                                    |              | in Physics                   |    |      |          |           |                 |           |        |                      |
|          | DSC12P8                            | 21PHY4C12P   | Electromagnetics Lab         | 20 | 30   | 50       | -         | -               | 4         | 2      | 4                    |
|          | Project                            | 21PHY4C1R    | Research Project             | 30 | 70   | 100      |           | -               | 8         | 4      | 4                    |
|          | Total Marks for IV Semester        |              |                              |    |      | 600      |           |                 |           | 24     |                      |
|          | (I-IV semester)- Total Marks: 2400 |              |                              |    | ]    | otal cre | dits: 9   | )6              |           |        |                      |

DSC – Department Specific Core, DSE – Discipline Specific Elective, SEC – Skill Enhancement Course, GEC – Generic Elective Course, IA – Internal Assessment, SEE – Semester End Examination, L – Lecture, T – Tutorial, P – Practical.

| Course: Mathematical Methods of Physics       | Course Code: 21PHY1C1L             |
|-----------------------------------------------|------------------------------------|
| <b>Teaching Hours/Week (L-T-P):</b> 4 - 0 - 0 | No. of Credits: 04                 |
| Internal Assessment: 30 Marks                 | Semester End Examination: 70 Marks |

#### **Course Objectives:**

The objective of this course is to train students to use the mathematical methods /techniques differential equations, special functions, Fourier series, integral transforms, linear algebra, matrices, vector calculus, group theory and tensors to understand physical systems.

#### **Unit 1: Differential equations and Special functions 11 Hours**

Differential equations: Ordinary differential equations: First order homogeneous and nonhomogeneous equations with variable coefficients. Second order homogeneous and non-homogeneous equations with constant and variable coefficients. (Ref 1, 2, 4, 5)

Special functions: Legendre functions: Legendre polynomials, Rodrigue's formula generating function and recurrence relations, orthogonality of Legendre equations. Bessel functions: Bessel functions of the first kind representation relations orthogonality. Hermite functions: Hermite polynomials, generating five recurrence relations, orthogonality. Laguerre functions: Laguerre and associated Laguerre polynomials, recursion relations, orthogonality. (Ref 1,2,4,5)

#### **Unit 2: Fourier series & Integral transforms**

Fourier series: Fourier's theorem. Cosine and Sine series. Change of interval. Complex form of Fourier series. Fourier integral. Extension to many variables. (Ref 1,2,4,5)

Fourier transforms: Introduction, Properties, Fourier transform of a derivative, Fourier transform of functions of two and three variables, Finite Fourier transforms, Some physical applications.

Laplace transforms: Introduction, Properties, Laplace transform of the derivative of a function, periodic function and some special functions, Inverse Laplace Transform-Properties and Evaluation, Convolution Theorem. (Ref 1,2,4,5)

#### **Unit 3: Linear Algebra and Matrices**

Linear Algebra: Scalar Products, real & Complex Vector Space, Metric Spaces, linear operator, algebra of linear operators, Norms, Infinite dimensional Vector Space, Hilbert Space. (Ref 4,5,6) Matrices: Cayley-Hamiltonian Theorem, matrix representation of operators, Unitary & Hermatian matrices, diagonalization of matrices, Eigen values & Eigen vectors. (Ref 4,5,6)

#### Unit 4: Complex analysis & Vector analysis

Complex analysis: Complex Numbers, Functions of a complex variable, Properties of analytic functions, Cauchy's integral theorem, singularities of an analytic function, Cauchy's residue theorem,

#### **M.Sc. Physics First Semester**

#### **11 Hours**

#### **11 Hours**

**11 Hours** 

evaluation of definite integrals. (Ref 1,2,4,5)

**Vector analysis:** Cartesian and curvilinear coordinate systems; Review of vector algebra; vector differentiation and integration; Line, surface and volume integrations, some examples; Gauss and Stoke's theorems. (Ref 1,2,4,5)

#### Unit 5: Group theory & Tensors

#### 11 Hours

**Group theory:** Groups, subgroups, classes, Homomorphism and isomorphism, Group representation, Reducible and irreducible representations, Character of a representation, character tables. Construction of representations, Representations of groups and quantum mechanics, Lie groups, The three dimensional rotation group SO(3), The special unitary groups SU(2) and SU(3), The irreducible representations of SU(2), Representations of SO(3) from those of SU(2). Ref (1,24,5)

**Tensors:** Coordinate transformation in linear spaces, definition and types of tensors, Contravariant and Covariant tensors, symmetric and antisymmetric tensors. Tensor algebra: Equality, addition and subtraction, tensor multiplication, outer product; contraction of indices, inner product, quotient theorem, Kronecker delta, metric tensor, Christoffel symbols. Ref (1,24,5)

#### **Reference Books:**

- 1. Mathematical Physics by Satya Prakash, S Chand and Sons, New Delhi, 2019.
- 2. Advanced Engineering Mathematics by H.K. Dass, S Chand and Company Ltd., 2013.
- 3. Mathematical Physics by B. D. Gupta, 3rd Ed, Vikas Publishing House Pvt. Ltd. 2004.
- 4. Mathematical Methods for Physicist, George Arfken and Hans J Academic press San Diego, 1995.
- 5. Advanced Engineering Mathematics, Erwin Kreyszig, 10th Edition, 2011.
- 6. Linear Algebra Seymour Lipschutz, Schaum Outlines Series, 4th Edition, 2009.

| СО | Statement                                                                                                  |
|----|------------------------------------------------------------------------------------------------------------|
| 1  | Solve differential equations of first & second orders.                                                     |
| 2  | Apply different transforms to solve mathematical problems of interest in science and engineering.          |
| 3  | Solve different physical problems which contain complex variables.                                         |
| 4  | Apply integral transforms to solve mathematical problems of interest in physics.                           |
| 5  | Formulate and express a physical law in terms of tensors, and simplify it by use of coordinate transforms. |

| M.Sc. | <b>Physics</b> | First | Semester |
|-------|----------------|-------|----------|
|-------|----------------|-------|----------|

| Course: Classical Mechanics                   | Course Code: 21PHY1C2L             |
|-----------------------------------------------|------------------------------------|
| <b>Teaching Hours/Week (L-T-P):</b> 4 - 0 - 0 | No. of Credits: 04                 |
| Internal Assessment: 30 Marks                 | Semester End Examination: 70 Marks |

#### **Course Objectives:**

The objective of this course is to understand the applications of classical mechanics including Newtonian, Lagrangian and Hamiltonian principles to physical systems.

#### Unit 1: Newtonian Mechanics and Motion in a Central Force Field 11 Hours

**Review of Newtonian mechanics:** Newton's law's of motion, Mechanics of single particle and system of particles: Conservation of linear momentum, energy and angular momentum (quantitative).

**Motion in a Central Force Field:** Equivalent one body problem (quantitative), Motion in a central force field (quantitative), General features of the motion (qualitative), Motion in an inverse square law force field (qualitative), Equation of the Orbit (quantitative), Nature of the orbits, Kepler's laws of planetary motion (Deduction of third law).

#### **Unit 2: Motion of a Rigid Body**

**Moving Coordinate systems:** Rotating coordinate systems, Coriolis force, Motion on the Earth (qualitative), Effect of coriolis force on freely falling particle (quantitative).

**Motion of a Rigid body:** Euler's Theorem, Angular Momentum and Kinetic energy (quantitative), Inertia Tensor, Euler's equations of motion (quantitative), Torque free motion (quantitative), Euler's angles (qualitative), motion of symmetric top (quantitative), Nutational Motion (quantitative).

#### **Unit 3: Lagrangian Formulation**

Constraints and its types, Generalized co-ordinates, D' Alembert's principle (expression for Virtual displacement, genealised velocity, virtual work, generalized force), Lagrangian equation of motion (quantitative) and its importance, Symmetries and the laws of conservation, cyclic co-ordinates, Velocity dependent potential of electromagnetic field, Rayleigh dissipation function, Simple applications.

#### **Unit 4: Hamilton's Formulation**

Configuration space, Basics of Variational principle, Hamilton's Principle, Hamilton's equations of motion (qualitative) and some applications, Phase space.

#### 11 Hours

**11 Hours** 

#### 11 Hours

Canonical transformation, Condition for transformation to be canonical, Poisson Brackets, Canonical equations in terms of Poisson Bracket notation, Hamiltonian-Jacobi equations, Numericals.

#### Unit 5: Two body Collisions and Small Oscillations 11 Hours

Elastic Scattering: Laboratory and centre of mass systems (quantitative), Kinematics of elastic scattering in laboratory systems, Inelastic Scattering, Cross section (quantitative), Rutherford formula (quantitative).

Theory of small oscillations, General case of coupled oscillations, Eigenvectors and Eigen frequencies, The orthogonality of eigenvectors, Normal coordinates, Small oscillations of particles on string.

#### **Reference Books:**

- 1. Classical Mechanics by H Goldstein, Third Edition, Pearson India, 2011.
- 2. Introduction to Classical Mechanics by R G Takwale and P S Puranik, Tata McGraw-Hill, 1979.
- 3. Classical Mechanics by N C Rana and P S Joag, Tata McGraw, 1991.
- 4. Classical Mechanics by J. C. Upadhyaya, Himalaya Publishing House, 2014.
- 5. Classical Dynamics of particles and systems by J. B. Marian, Academic Press, New York, 1965.

#### Course Outcomes (CO): After completion of this course student should able to

| CO | Statement                                                                                                                             |
|----|---------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Solve the problems of motion of particle in a central force field.                                                                    |
| 2  | Develop the knowledge of quantitative and qualitative methods for understanding moving coordinate systems and motion of a rigid body. |
| 3  | Organize the importance of Lagrangian concepts of motion.                                                                             |
| 4  | Describe the Variational Principle, Hamilton's equation of motion and Poisson brackets.                                               |
| 5  | Interpret the concepts of elastic scattering, inelastic scattering and small oscillations.                                            |

\*\*\*\*

| Course: Atomic, Molecular and Optical Physics | Course Code: 21PHY1C3L             |
|-----------------------------------------------|------------------------------------|
| <b>Teaching Hours/Week (L-T-P):</b> 4-0-0     | No. of Credits: 04                 |
| Internal Assessment: 30 Marks                 | Semester End Examination: 70 Marks |

#### **Course Objectives:**

The objective of this course is to understand the fundamentals of atomic, molecular and optical physics and apply them to explain behavior of physical systems.

#### **Unit 1: Atomic Physics I**

Brief review of early atomic models of Bohr and Sommerfeld, Spectrum of hydrogen, Rydberg atoms (brief treatment), Quantum states of an electron in an atom, Spin orbit interaction – Expression for term shift, Quantum mechanical relativity correction for term shift, Hydrogen fine structure, Spectrum of helium – ortho and para states, Fine structure in alkali spectra, Calculation of level splitting due to spin-orbit interaction in alkali spectra, Sodium doublet, Intensity ratio for doublets, Hyperfine structure – Isotope and nuclear spin effects, Width of spectral lines- Natural, Doppler and External effects. (Ref. 1, 2, 3 & 4)

#### Unit 2: Atomic Physics II

Magnetic moment of a bound electron, Zeeman effect – Types, Magnetic interaction energy, Zeeman splitting in Sodium D-lines, Paschen-Back effect – Magnetic interaction energy, Paschen-Back splitting in Sodium D-lies, Stark effect – Types, Stark effect in hydrogen – weak and strong fields, Coupling schemes: LS and jj coupling – Expression for interaction energy, multiplet splitting and Lande interval rule, Electron Spin Resonance (ESR), Nuclear Magnetic Resonance (NMR), Chemical Shift in NMR (qualitative). Working Principle of Constant Deviation Spectrometer (CDS) and its uses. Talbot bands, Hartman's formula. (Ref. 1, 2, 3 & 4)

#### **Unit 3: Rotational and Vibrational spectroscopy**

Rotational/microwave Spectra: Types of molecules based on rotation, Rotational spectra of rigid diatomic molecule, Intensities of spectral lines, Effect of isotopic substitution, Spectrum of non-rigid rotator, Instrumentation for rotational spectroscopy – Microwave spectrometer, Chemical analysis by microwave spectroscopy, Microwave radiation for microwave oven (qualitative).

Vibrational/infrared spectra: Vibrating molecule as a simple harmonic oscillator, Anharmonic oscillator, Diatomic vibrating rotator, Analysis by infrared techniques, Instrumentation for Vibrational spectroscopy – infrared spectrometer. (Ref. 2, 5 & 6)

#### **Unit 4: Raman and Electronic Spectroscopy**

Raman Spectra: Classical and Quantum Theories of Raman effect, experimental technique, Pure rotational Raman spectra of linear & symmetric top molecules, Raman activity of vibrations, Rule of

#### **11 Hours**

### 11 Hours

#### **11 Hours**

#### **11 Hours**

mutual exclusion, Vibrational Raman spectra. Comparison of infrared and Raman spectroscopy. Applications of Raman spectroscopy (qualitative).

Electronic Spectra: Born-Oppenheir approximation, Vibrational coarse structure: progressions, Intensity of Vibrational-Electronic spectra : Franck-Condon principle, Rotational fine structure of Electronic-Vibration transitions, Dissociation and predissociation, Chemical analysis by electronic spectroscopy, Instrumentation for electronic spectroscopy : UV-Vis spectrometer (single and double beam). Jablonski diagram - fluorescence and phosphorescence, Selection rules. (Ref. 2, 5 & 6)

#### Unit 5: Optical Physics

#### 11 Hours

Coherence of light - spatial and temporal coherence, Characteristics of a laser beam, Laser light versus ordinary light, Induced absorption, spontaneous and stimulated emissions, Einstein's coefficients, Population inversion and methods, Metastable states, Beer's law – attenuation of light, Theory of amplification of light – Gain coefficient, Threshold condition for light amplification, Requisites of laser system – active medium, energy source & optical resonant cavity, Three level lasers versus Four Level lasers with examples, Laser Systems: (a) Nd-YAG Laser (b) Carbon Dioxide Laser (c) Excimer Laser (d) Dye Lasers (e) Free-Electron Laser, Applications of Laser: (a) Holography (b) Defense – Ranging (c) Laser Cooling (d) Isotope separation (e) Eye Surgery: LASIK. (Ref. 1, 2 & 7)

#### **Reference Books:**

- 1. Concepts of Modern Physics by Arthur Beiser, Shobhit Mahajan and S Rai Choudhury, McGraw Hill Education, 7th Edition, 2015.
- 2. Atomic and Molecular Spectra by Raj Kumar, Kedar Nath Ram Nath (KNRN) Publishers, 5<sup>th</sup> Edition Reprint 2019.
- 3. Introduction to Atomic Spectra by H.C. White, McGraw-Hill Education / Asia, 1963.
- 4. Concepts of Atomic Physics by S.P. Kuila, New Central Book Agency (P) Ltd. (NCBA), Kolkata, January 2018.
- 5. Fundamentals of Molecular Spectroscopic by C N. Banwell and E. M. McCash, Tata McGraw-Hill Publishing Co., Ltd., New Delhi, 5<sup>th</sup> Edition, 2008.
- 6. Molecular Spectra by Herzberg Gerhard, D.Van Nostrand Company Inc., Vol.I, 2005.
- 7. Laser Fundamentals by William T. Silfvast, Cambridge University Press, 2<sup>nd</sup> Edition, 2004.

#### Course Outcomes (CO): After completion of this course student should able to

| СО | Statement                                                                                   |
|----|---------------------------------------------------------------------------------------------|
| 1  | Apply the concepts of atomic physics to analyse and interpret spectra of atoms.             |
| 2  | Apply the concepts of molecular physics to analyse and interpret spectra of molecules.      |
| 3  | Apply the concepts of laser physics to understand the laser systems and their applications. |

\*\*\*\*

| Course: Electronics                       | Course Code: 21PHY1C4L             |
|-------------------------------------------|------------------------------------|
| <b>Teaching Hours/Week (L-T-P):</b> 4-0-0 | No. of Credits: 04                 |
| Internal Assessment: 30 Marks             | Semester End Examination: 70 Marks |

#### **Course Objectives:**

The objective of this course is to train students to understand the applications of electronic devices and circuits.

#### **Unit 1: Physics of Devices**

Carrier concentration in intrinsic and extrinsic semiconductors, electrical conduction mechanism in semiconductors, Fermi level in intrinsic and extrinsic semiconductors and its dependence on temperature and carrier concentration. Carrier generation - recombination, mobility, drift-diffusion current. Theory of p-n junctions – depletion region, forward bias, reverse bias, carrier density, current, electric field, barrier potential. V-I characteristics, Junction breakdown.

#### 11 hours

#### **Unit 2: Transistor**

Transistor action, configurations (CE, CB & CC) and relation between  $\alpha$ &  $\beta$ . BJT transistor modelling, Hybrid equivalent model, Voltage divider bias, CE and Emitter follower configurations, Frequency response. Hybrid model equivalent circuit concept. Concept of feedback criteria for oscillation. Oscillator operation, Phase shift oscillator, Wein-bridge oscillator, FET amplifiers: FET small signal model, Biasing of FET, Common drain common gate configurations, Operational characteristics of MOSFET.

#### 11 hours

#### **Unit 3: Operational amplifier**

Concepts of differential amplifier, Ideal op-amp, op-amp parameters, ideal voltage transfer curve, open loop and closed op-amp configurations, inverting amplifier, non-inverting amplifier, limitations of open loop op-amp configurations. feedback in Op-amp. Current amplifier, summing amplifier, difference amplifier, integrator and differentiator. Active filters: Types and specifications, filter transfer function, first order and second order filter functions, low-pass, high-pass band-pass and band-reject filters, Butterworth filter. Signal generators Basic principles. Phase shift oscillator and crystal oscillators.

#### 11 hours

#### **Unit 4: Digital Electronics**

Boolean operations and expressions, Boolean analysis of logic gates, simplification of Boolean expression. Karnaugh map: two, three and four variable map, product of sums (POS) and sum of

#### 11 hours

products (SOP) simplification. Families of logic gates, implementation of Boolean expressions. Logic gates: AND, OR, NAND and NOR gates, AND-OR and NAND-NOR implementation of Boolean expression, Logic gate operation with pulse waveforms.

#### 11 hours

#### **Unit 5: Sequential and Conversion circuit**

Latches flip flop, RS and JK flip-flops, The Master-Slave JK Flip-Flop, D and T flipflops. Counters - Binary Ripple Counters, Synchronous Binary counters, counters based on Shift Registers, introduction to A/D and D/A conversion circuits, filtering and sampling, quantisation, quantization error, flash converter and dual slop converter, conversion errors. Binary weighted converter, R-2R ladder converter, characteristic properties. Introduction to microprocessor.

#### **Reference Books:**

- 1. Physics of Semiconductor Devices by S M Sze, Kwok K Ng John Wiley 3<sup>rd</sup> Ed. 2007.
- 2. Microelectronics, J Millman and Arvin Grabel, Mc Graw Hill 2<sup>nd</sup> Edition 1987.
- 3. Introduction to electronics, K J M. Rao. Oxford 1976.
- 4. Integrated electronics, Milmann and Halkias. Mc Graw Hill 1991.
- 5. Electronic Fundamentals and Application, J D Ryder. Ed. Rev 1966.
- 6. Basic Electronics B L Theraja S Chand 1<sup>st</sup> Ed. 1985.
- 7. Op-Amps and Linear Integrated Circuits, R Gayakwad, PHI Publications, 2000.
- 8. Operational Amplifiers and Linear IC's, F Robert Coughlin, F Frederick, PHI, 1994.
- 9. Digital Principles and Applications, A P Malvino and D Leach, TMH 1991.
- 10. Digital fundamentals, Thomas L Floyd, 8<sup>th</sup> edition, Pearson Education 2003.

| CO | Statement                                                                       |
|----|---------------------------------------------------------------------------------|
| 1  | Explain basic working principles and governing equations of electronic devices. |
| 2  | Design and analyse the electronic circuits.                                     |
| 3  | Apply the knowledge for the development and design of new methods to determine  |
|    | semiconductor parameters and devices.                                           |

| Course: Design of Electrical & Electronics Circuits | Course Code: 21PHY1S1LP            |
|-----------------------------------------------------|------------------------------------|
| <b>Teaching Hours/Week (L-T-P):</b> 1-0-2           | No. of Credits: 02                 |
| Internal Assessment: 20 Marks                       | Semester End Examination: 30 Marks |

#### **Course Objectives:**

The objective of this course is to train students to on the aspets of design electrical and electronic circuits.

#### **Unit 1: Measurement and Principles of Electricity**

Instruments accuracy, precision, sensitivity, resolution range. Errors in measurements and loading effects. AC, DC, Voltage, Current, Resistance, Capacitance, Inductance, fundamentals and applications, **Hands on Sessions:** Analysis of R, RC, LC and RLC and its application as passive filters.

#### **Unit 2: Electric Motors**

AC & DC motors. Basic design. Interfacing DC or AC sources to control heaters & motors.

Hands on Sessions: Modeling and control of a DC motor (PWM Controlled DC Motor).

#### **Unit 3: Introduction of Virtual Lab**

Introduction to Python, Matlab and ExpEyes Kit, components, Sources and connectors with ExpEyes Kit. **Hands on Sessions:** Producing Sinusoidal Waves, Study of V-I characteristic curve of Diode, Study of LDR, Charging and discharging of capacitor in RC and LCR circuit.

#### **Reference Books:**

- 1. Electric Circuits, S. A. Nasar, Schaum's outline series, Tata McGraw Hill (2004)
- Electrical Circuits, M. Nahvi& J. Edminister, Schaum's Outline Series, Tata McGraw-Hill (2005)
- 3. Electrical Circuits, K.A. Smith and R.E. Alley, 2014, Cambridge University Press
- 4. Electronic Devices and Circuits, David A. Bell, 5th Edition 2015, Oxford University Press.
- 5. Lab Manual prepared by IUAC, New Delhi

#### Course Outcomes (CO): After completion of this course student should able to

| CO | Statement                                                                                 |
|----|-------------------------------------------------------------------------------------------|
| 1  | Explain how to model, simulate, and analyze an electric circuits.                         |
| 2  | Explore effect of parametric variation on the performance of a circuit.                   |
| 3  | Perform simple multi-domain simulation of a physical system.                              |
| 4  | Explain the solution process and customize existing models to suit specific requirements. |
| 5  | Explain the importance of virtual lab                                                     |
| 6  | Model and simulate circuits using interface.                                              |

#### 14 hours

#### 14 hours

14 hours

| Course: Atomic, Molecular and Optical Physics Lab | Course Code: 21PHY1C3P             |
|---------------------------------------------------|------------------------------------|
| <b>Teaching Hours/Week (L-T-P):</b> 0 - 0 - 4     | No. of Credits: 02                 |
| Internal Assessment: 20 Marks                     | Semester End Examination: 30 Marks |

#### **Course Objectives:**

The objective of this course is to conduct experiments in atomic, molecular and optical physics to determine atomic, molecular and optical parameters of matter/device/systems.

### **List of Experiments**

- 1. Wavelength of sodium light using Michelson's Interferometer.
- 2. Determination of doublet separation by using Michelson's Interferometer.
- 3. Determination of Rydbereg constant using diffraction grating and hydrogen discharge tube.
- 4. Study of absorption spectrum of iodine vapour and determination of force constant.
- 5. Talbot bands.
- 6. Constant deviation Spectrometer.
- 7. Verification of Hartman's formula.
- 8. Study of Zeeman effect
- 9. Study of Stark effect
- 10. Analysis of rotational spectrum
- 11. Analysis of Vibrational spectrum
- 12. Verification of Beer's law.
- 13. Temporal and spatial coherence of laser light.
- 14. Wavelength of Laser light by single slit diffraction method.
- 15. Wavelength of Laser light by double slit interference method.
- 16. Diffraction halos (Lycopodium powder particle size determination).
- 17. Ultrasonic velocity in liquids using Spectrometer / spectral shift.

#### Note:

- 1. Minimum of EIGHT experiments must be carried out.
- 2. Experiments may be added as and when required with the approval of BoS.

#### **References:**

1. University Practical Physics by D.C. Tayal, Himalaya Publishing House, First Millenium Edition, 2000.

- 2. Advanced Practical Physics for students by B.L. Flint and H.T. Worsnop, Asia Publishing House, 1971.
- 3. A Text Book of Practical Physics, I. Prakash & Ramakrishna, Kitab Mahal, 11<sup>th</sup> Edition, 2011.
- 4. Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, Heinemann Educational Publishers, 4<sup>th</sup> Edition, 1985.

#### Course Outcomes (CO): After completion of this course student should able to

| СО | Statement                                            |
|----|------------------------------------------------------|
| 1  | Design experiments to study atomic spectra of atoms. |
| 2  | Analyse spectra of molecules.                        |
| 3  | Use laser light to determine properties of light.    |

\*\*\*\*

| Course: Electronics Lab                   | Course Code: 21PHY1C4P             |
|-------------------------------------------|------------------------------------|
| <b>Teaching Hours/Week (L-T-P):</b> 0-0-4 | No. of Credits: 02                 |
| Internal Assessment: 20 Marks             | Semester End Examination: 30 Marks |

#### **Course Objectives:**

The objective of this course is to conduct experiments in electronics to study behavior of electronic devices.

### **List of Experiments**

- 1. Studies on Cathode Ray Oscilloscope: DC/AC voltages and frequencies of sine and square signals, Unknown frequencies using Lissageous figures.
- 2. Full-wave bridge rectifier using diodes: Design and study the performance of CR, L and  $\pi$  type filters.
- 3. Study of Fixed Bias and Voltage divider bias configuration for CE transistor.
- 4. Study of Astablemultivibrator using transistors: Frequency studies.
- 5. To design inverting amplifier using Op-amp (741, 351) & to study its mathematical operations.
- 6. To design non-inverting amplifier using Op-amp (741, 351) & study frequency response.
- 7. Design and study frequency response Weinbridge Oscillator using Op-Amp.
- 8. Design and construction of Logic gates using diodes and transistor and verify their truth table.
- 9. Construction of Karnaugh map for three and four variables.
- 10. (a) To convert Boolean expression into logic circuit & design it using logic gate ICs.
  - (b) To minimize a given logic circuit.
- 11. Flip-Flop: Design of JK and RS flip flop circuit using IC 7412and study the truth table.
- 12. Study of A/D and D/A conversion circuits.

#### Note:

- 1. Minimum of EIGHT experiments must be carried out.
- 2. Experiments may be added as and when required with the approval of BoS.

#### **Reference Books:**

- Electronic devices and circuit Theory by R.Boylstead and Nashalsky, Pearson, 10<sup>th</sup> Edition, 2009.
- 2. Digital Principles and Applications, A P Malvino and D Leach, TMH 1991.
- 3. Operational amplifiers and linear IC's by F.Robert Coughlin and Frederick F Driscoll.
- Instrumental Methods of Analysis : (6th Edition) H.H. Willard, L.L.Merrit, J.A. Dean & F.A. Settle, J.K. Jain for CBS Publishers (1986).

| CO | Statement                                                                                        |
|----|--------------------------------------------------------------------------------------------------|
| 1  | Use Cathode Ray Oscilloscope for electrical measurements.                                        |
| 2  | Design electrical/electronic devices using diodes/transistors and analyse their characteristics. |
| 3  | Design electronic circuits using OP-AMP and analyse their characteristics.                       |
| 4  | Design electronic circuits using logic gates/ICs and analyse their characteristics.              |

\*\*\*\*\*

### **Physics First Semester**

| Course: Mathematical Methods of Physics       | Course Code: 21PHY1C1T             |
|-----------------------------------------------|------------------------------------|
| <b>Teaching Hours/Week (L-T-P):</b> 0 - 2 - 0 | No. of Credits: 02                 |
| Internal Assessment: 20 Marks                 | Semester End Examination: 30 Marks |

#### **Course Objectives:**

The objective of this course is to train students to apply mathematical techniques to well defined physical situations.

Unit 1: Physical Applications of Differential Equations and Special Functions 09 hours Radiocarbon Dating, Heating an office building (Newton's Law of Cooling), Leaking Tank. Outflow of Water Through a Hole (Torricelli's Law), Free Oscillations of a Mass–Spring System, Modeling Electrical Circuits (Differential Equations-Ref Kreyszig), Linear Electric Multipoles (Legendre Polynomials - Ref. Arfken)

#### Unit 2: Physical Applications of Fourier Series and Integral Transforms09 hours

Transverse vibrations of a string, Effective Values and average of a product (Fourier Series-Ref B D Gupta), Guassian Probability Function - (Fourier Transform-Ref B D Gupta), Determining charge on the capacitor, Deflection of a beam (Laplace Transform-Ref B D Gupta), The LCR Circuit (Laplace Transform - Lesson 11, Study of DC transients in R-L-C Circuits Version 2 EE IIT, Kharagpur).

#### Unit 3: Physical Applications of Vector Analysis, Matrices and Tensors 08 hours

Force on a charged particle, Circular motion of a particle (Vector Analysis – B D Gupta), Laplace's and Poisson's equations (Ref. Arfken), Electromagnetic Field (Ref. Satya Prakash), Matrices in Physics – Pauli spin matrices and Dirac matrices (Ref. SatyaPrakash), Matrices in the study of electrical circuits, Tensors in Elasticity, Tensors in Rigid Bodies (Ref. Satya Prakash).

#### **Reference Books:**

- 1. Mathematical Physics by Satya Prakash, S Chand and Sons, New Delhi, 2019.
- 2. Mathematical Physics by B. D. Gupta, 3rd Ed, Vikas Publishing House Pvt. Ltd. 2004.
- 3. Mathematical Methods for Physicist, George Arfken and Hans J Academic press San Diego, 1995.
- 4. Advanced Engineering Mathematics, Erwin Kreyszig, 10th Edition, 2011.
- 5. NPTEL lectures on Laplace Transform Lesson 11, Study of DC transients in R-L-C Circuits Version 2 EE IIT, Kharagpur.

| CO | Statement                                                                                    |
|----|----------------------------------------------------------------------------------------------|
| 1  | Apply Differential Equations and Special Functions to interpret physical/electrical systems. |
| 2  | Apply Fourier Series and Integral Transforms to interpret physical/electrical systems.       |
| 3  | Apply Vector Analysis, Matrices and Tensors to interpret physical systems.                   |