

VIJAYANAGARA SRI KRISHNADEVARAYA UNIVERSITY JNANASAGARA CAMPUS, BALLARI-583105

Department of Studies in

Electronics

III & IV Semester Syllabus

Bachelor of Science

With effect from 2021-22 Batch and onwards

Name of the Department: Electronics

Semester-III

DSC 3: Oscillations and OP-Amps

Course Title: Oscillations and OP-Amps	Course code: : 21BSC3C3ELL
Total Contact Hours: 55	Course Credits: 04
Internal Assessment Marks: 40 marks	Duration of SEE: 03 hours
Semester End Examination Marks: 60 marks	

Course Outcomes (CO's):

At the end of the course, students will be able to:

- 1. Advance Knowledge Of Wave Shaping Circuits.
- 2. Design different Types Of Oscillators.
- 3. Explain Basics Of Operational Amplifier.
- 4. Explain Operational amplifier applications and different Computation.

DSC 3: Oscillations and OP-Amps

Unit	Description	Hours
1	Wave Shaping Circuits : Introduction to linear and non linear wave shaping. RC & RL differentiating circuits- derivation, input and output wave forms. RC & RL integrating circuits- derivation, input and output wave forms. non - linear wave shaping- positive, negative clippers. biased - positive, negative clippers & combination clipper. Clamping circuits- positive and negative clampers.	11
2	Sinusoidal Oscillators : Classification of oscillators. Damped & un damped oscillator. The oscillatory circuit (tank circuit). essentials of transistor oscillator- barkhausen criterion. Transistor LC oscillator: Hartley oscillator and Colpitts oscillator limitations of LC & RC oscillators. Transistor crystal oscillator: working of quartz crystal, equivalent circuit of crystal frequency response of transistor crystal oscillator.	11
3	Non sinusoidal oscillators : Non sinusoidal wave forms, classification, Definitions of pulse parameters, time delay, rise time, turn on, turn off, storage time, fall time, pulse width and duty cycle. Multivibrators: types and uses, construction and working of Astable, Monostable and bistable multivibrators Schmitt trigger using transistors and 555 timer.	11
4	Operational Amplifier : introduction, advantages and disadvantages of IC technology, IC packages, scale of integration, IC terminology, Emitter coupled differential amplifier- differential and common mode operation, CMRR, block diagram of	11

	OPAMP. Characteristics of ideal OPAMP. Inverting and non inverting opamp expressions for closed loop voltage gain, op amp parameters- input bias current, input offset voltage, output offset voltage and input and output impedances, CMRR and slew rate, frequency compensation, null adjustment.	
2	 OPAMP Applications & Analog Computation: OPAMP as an integrator , differentiator- circuit function and wave forms Active filters- OPAMP low pass, High pass, band pass and band reject filters- circuit construction, function and frequency response. OPAMP oscillators- comparator, Schmitt trigger phase shift oscillator, wein bridge oscillator, astable, bistable and monostable multivibrator- circuit and working. Introduction to Analog Computation, linear computing circuits and 	
	symbols using OPAMP- scale changer, adder, sub tractor, multiplication by a constant.	

Reference Books:

- 1. Operatinal amplifiers &linear integrated circuits ;Ramakanth Gayakwad,
- 2. Electronics devices & circuit theory; Robert Boylestead & Louis Nashelsky
- 3. Operational amplifiers &linear integrated circuits by Robert F.Coughlin & Frederick F.Driscoll,
- 4. Electronic principles, AP Malvino,
- 5. Integrated circuits ,KR Botkar
- 6. Analog computation & simulation by V. Rajraman

Name of the Department: Electronics

Semester-III

DSC 3: Oscillations and OP-Amps Lab

Course Title: Oscillations and OP-Amps Lab	Course code: 21BSC3C3ELP
Total Contact Hours: 52	Course Credits: 02
Internal Assessment Marks: 25	Duration of SEE: 03 hours
Semester End Examination Marks: 25	

Course Outcomes (CO's):

At the end of the course, students will be able to:

- 1. Make connections using breadboard And IC's.
- 2. Design Different computations Using OP-AMP IC's.
- 3. Design Amplifier Circuits and analyze their Performance.
- 4. Analyze Performance Of Different Wave Shaping Circuits and Systems

DSC 3: Oscillations and OP-Amps Lab

List of Experiments

- 1. Colpitt's oscillator(using transistor)- determine the frequency of oscillation
- 2. Hartley oscillator(using transistor)- determine the frequency of oscillation
- 3. Phase shift oscillator(using transistor)- determine the frequency of oscillation
- 4. Wien bridge oscillator(using transistor)- determine the frequency of oscillation
- 5. Crystal oscillator(using transistor)- determine the frequency of oscillation
- 6. Inverting & non inverting op-Amp determination of gain
- 7. Frequency response of inverting op-Amp
- 8. Frequency response of Non-inverting op-Amp
- 9. Phase shift oscillator(using op-Amp)- determine the frequency of oscillation
- 10. Wien bridge oscillator(using op-Amp)- determine the frequency of oscillation
- 11. Active low pass filter- Frequency response
- 12. Active high pass filter- Frequency response
- 13. Determination of op-Amp parameters
- 14. Op Amp as a differentiator & integrator

Note:

- 1. Minimum of EIGHT experiments must be carried out.
- 2. Experiments may be added as and when required with the approval of BoS.

Reference Books:

- 1. Operatinal amplifiers &linear integrated circuits ;Ramakanth Gayakwad,
- 2. Electronics devices & circuit theory; Robert Boylestead & Louis Nashelsky
- 3. Operational amplifiers &linear integrated circuits by Robert F.Coughlin & Frederick F.Driscoll,
- 4. Electronic principles, AP Malvino,
- 5. Integrated circuits ,KR Botkar
- 6. Analog computation & simulation by V. Rajraman