Name of the Department: Electronics

OEC: Energy Devices and Sensors

Course Title: Energy Devices and Sensors	Course code: 21BSCOEEL
Total Contact Hours: 42	Course Credits: 03
Internal Assessment Marks: 40 marks	Duration of SEE: 03 Hours
Semester End Examination Marks: 60 marks	

Course Outcomes (COs):

At the end of the course, students will be able to:

- 1. Describe the performance of transducers.
- 2. Explain the functions of all the types of Sensors.
- 3. Explain signal conditioning and DAQ systems.
- 4. Use various test instruments.

OEC: Energy Devices and Sensors

Unit	Description	Hours
1	Transducers:	09
	Transducers -Classification of transducers Strain gauge - Types-uses.	
	Construction, operation and applications of photo electric transducer,	
	LVDT, RVDT and Load cell.	
2	Motion, Proximity and Ranging Sensors:	09
	SENSORS IR range sensor – IR proximity sensor- Ultrasonic range sensor-	
	Touch Sensor.	
	Motion Sensors – Potentiometers, Resolver, Encoders – Optical, Magnetic,	
	Inductive, Capacitive, GPS, Bluetooth, Range Sensors - RF beacons,	
	Ultrasonic Ranging, Reflective beacons, Laser Range Sensor (LIDAR).	
3	Force, Magnetic and Heading Sensors:	08
	Strain Gage, Load Cell, Magnetic Sensors -types, principle, requirement	
	and advantages: Magneto resistive – Hall Effect – Current sensor Heading	
	Sensors – Compass, Gyroscope, Inclinometers.	
4	Signal Conditioning and DAQ Systems:	08
	Amplification – Filtering – Sample and Hold circuits – Data Acquisition:	
	Single channel and multi channel data acquisition – Data logging –	
	applications - Automobile, Aerospace, Home appliances, Manufacturing,	
	Environmental monitoring.	
5	Test Instruments:	08
	Digital voltmeter -Types (to list only) - Basic block diagram of DVM -	

	Block diagram of Digital multimeter- Advantages over analog instruments - Block diagram of Digital frequency counter- Simple PC based Data Acquisition system – Block diagram.		
	References: 1. Patranabis D, Sensors and Transducers, 2nd Edition, PHI, New Delhi, 2010.		
1.	1. Fairanabis D, Sensors and Transducers, 2nd Educion, FTH, New Denn, 2010.		

- John Turner and Martyn Hill, Instrumentation for Engineers and Scientists, Oxford Science Publications, 1999.
- 3. Richard Zurawski, Industrial Communication Technology Handbook 2nd edition, CRC Press, 2015.