

### VIJAYANAGARA SRI KRISHNADEVARAYA UNIVERSITY

JNANASAGARA CAMPUS, BALLARI-583105

## **Department of Studies in**

## Mathematics

# **III Semester Syllabus**

**Bachelor of Science** 

With effect from 2021-22 and onwards Approved in BOS dated on 23-09-2022

#### Name of the Department: Mathematics Semester-III DSC3: Ordinary Differential Equations & Real Analysis-I

| Course Title: Ordinary Differential Equations &<br>Real Analysis-I | Course code: 21BSC3C3MTL |
|--------------------------------------------------------------------|--------------------------|
| Total Contact Hours: 56                                            | Course Credits: 04       |
| Internal Assessment Marks: 40                                      | Duration of SEE: 3 hours |
| Semester End Examination Marks: 60                                 |                          |

Course Outcomes (CO's):

#### At the end of the course, students will be able to:

- 1. Distinguish between linear, nonlinear, partial and ordinary differential equations.
- 2. Recognize and solve an exact differential equation.
- 3. Recognize and solve a linear differential equation by use of an integrating factor.
- 4. Make a change of variables to reduce a differential equation to a known form.
- 5. Find particular solutions to initial value problems.
- 6. Solve basic application problems described by first order differential equations and total Differential Equations.

#### DSC3: Ordinary Differential Equations & Real Analysis-I

| Unit | Description                                                                                                                                                                                                                                                                                                                                     | Hours |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1    | Recapitulation of differential equations, Linear and Bernoulli's equations,<br>exact equations, equations reducible to exact form., simple equations of<br>first order and higher degree equations: solvable for p,x,y. Clairauts<br>equations and their singular solutions.                                                                    | 11    |
| 2    | Second and higher order ordinary linear differential equations with<br>constant coefficients, complementary functions, particular integrals<br>(Standard types), Cauchy- Euler differential equation of order two,<br>simultaneous differential equations with constant coefficients.                                                           | 11    |
| 3    | Solutions of ordinary second order linear differential equation by the following methods: when a part of complementary function is given, Changing the independent variable. Changing the dependent variable, When first integral is given (Exact equation), variation of parameters, Sturm-Liouville boundary value problem, Green's function. | 11    |
| 4    | Total Differential Equations: Necessary condition for the equation<br>Pdx+Qdy+Rdz=0 to integral problems there on, Solution of the equation of<br>the form                                                                                                                                                                                      | 11    |

| 5      | Riemann Integration: Recapitulation of real number system, postulates and<br>their consequences, inequalities and absolute values, lower and upper<br>bounds. The upper and lower sums, necessary and sufficient conditions for<br>integrability. Algebra of integrable functions. Integrability of continuous<br>and monotonic functions. Fundamental theorem of calculus, change of<br>variables. Integration by parts. The first and second mean value theorems<br>of integral calculus. | 12 |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Refere | nces:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| 1.     | M.D Raisinghania: Advanced Differential equations (S.Chand & co).                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| 2.     | B.S Grewal: Higher Engineering Mathematics (Khanna Publishers).                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| 3.     | Rudraiah et al: College Mathematics, Vol. I & II, (Sapna Book House, Bang                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| 4.     | Simnens G.F: Differential equations (TMH)                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| 5.     | S C Malik: Mathematical Analysis (New Age International Pvt Ltd).                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| 6.     | Sharma and Vasistha: Real Analysis (Krishna Prakashan Mandir, Meerut).                                                                                                                                                                                                                                                                                                                                                                                                                      |    |

Date

Course Coordinator

Subject Committee Chairperson

#### DSC3 Lab: Practical on Ordinary Differential Equations & Real Analysis – I

| Course Title: Practical on Ordinary Differential<br>Equations & Real Analysis – I | Course code: 21BSC3C3MTP |
|-----------------------------------------------------------------------------------|--------------------------|
| Total Contact Hours: 56                                                           | Course Credits: 04       |
| Internal Assessment Marks: 25                                                     | Duration of SEE: 3 hours |
| Semester End Examination Marks: 25                                                |                          |

Course Outcomes (CO's):

#### At the end of the course, students will be able to:

- 1. Gain hands-on experience of Free and Open Source software (FOSS) tools or computer programming.
- 2. Solve exact differential equations
- 3. Plot orthogonal trajectories
- 4. Find complementary function and particular integral of linear and homogeneous differential equations.
- 5. Acquire knowledge of applications of real analysis and differential equations.
- 6. Verify convergence/divergence of different types of series

#### DSC3 Lab: Practical on Ordinary Differential Equations & Real Analysis – I

| Unit | Description                                                                                                                                                                                | Hours |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|      | List of Programs:                                                                                                                                                                          |       |
|      | Use open-source software to executive the practical problems. (Maxima/<br>Scilab/MatLab /Mathematica/Python                                                                                |       |
|      | 1. Fundamentals of Ordinary differential equations and Real analysis using FOSS                                                                                                            |       |
|      | 2. Verification of exactness of a differential equation                                                                                                                                    |       |
|      | 3. Plot orthogonal trajectories for Cartesian and polar curves                                                                                                                             |       |
|      | 4. Solutions of differential equations that are solvable for x, y, p.                                                                                                                      |       |
|      | 5. To find the singular solution by using Clairaut's form.                                                                                                                                 |       |
| 1    | <ol> <li>Finding the Complementary Function and Particular Integral of linear<br/>and homogeneous differential equations with constant coefficients and<br/>plot the solutions.</li> </ol> | 56    |
|      | 7. Finding the Particular Integral of differential equations up to second order and plot the solutions.                                                                                    |       |
|      | 8. Solutions to the Total and Simultaneous differential equations and plot the solutions.                                                                                                  |       |
|      | 9. Test the convergence of sequences                                                                                                                                                       |       |
|      | 10. Verification of exponential, logarithm and binomial series.                                                                                                                            |       |
|      | 11. Verification of geometric series, p-series, Cauchy's Integral test, root test, and D Alembert's Test                                                                                   |       |

|         | 12. Examples on a series of positive terms.                                |  |
|---------|----------------------------------------------------------------------------|--|
|         | 13. Examples on alternating series using Leibnitz's theorem.               |  |
|         | 14. Finding the convergence of series using Cauchy's criterion for partial |  |
|         | sums                                                                       |  |
|         | Juiib.                                                                     |  |
|         |                                                                            |  |
|         |                                                                            |  |
| Referen | ces:                                                                       |  |
|         |                                                                            |  |
| 1. N    | M.D Raisinghania: Advanced Differential equations (S.Chand & co).          |  |
| 2. E    | B.S Grewal: Higher Engineering Mathematics (Khanna Publishers).            |  |
| 3. F    | Rudraiah et al: College Mathematics, Vol. I & II, (Sapna Book House, Bang  |  |
| 4. S    | Simnens G.F: Differential equations (TMH)                                  |  |
|         |                                                                            |  |

- S C Malik: Mathematical Analysis (New Age International Pvt Ltd).
   Sharma and Vasistha: Real Analysis (Krishna Prakashan Mandir, Meerut).

Date

Course Coordinator

Subject Committee Chairperso