

VIJAYANAGARA SRI KRISHNADEVARAYA UNIVERSITY

JNANASAGARA CAMPUS, BALLARI – 583 105

Department of Studies in Chemistry

SYLLABUS

Master of Science (I-IV Semester)

With effect From 2021-22

VIJAYANAGARA SRI KRISHNADEVARAYA UNIVERSITY

JNANASAGARA CAMPUS, BALLARI-583105

Department of Studies in Chemistry

Programme: Master of Science (M.Sc.) in Chemistry

Programme Overview:

Duration: 2 Years (4 semesters)

Master of Science (M.Sc.) in Chemistry programme provides fundamental and applied knowledge in Chemistry with hands-on training through laboratory practicals and foster career in teaching, research or industry.

Program Educational Objectives (PEOs):

- Post graduates will demonstrate capability to understand, analyse, develop, and execute the chemical solutions for the current societal requirements through experimental and experiential learning.
- Post Graduates exhibit professionalism and organizational goals with commitment to ethics, team work and respect for everyone.
- Students gets motivated for continuous learning and career development.
- Students impart educational skills and the knowledge in Chemistry in academia, research and industries .

Program Outcomes (POs):

- Discipline knowledge: Capable to apply knowledge of Chemistry and research to understand and solve the societal requirements.
- Solving of problems: Identify, analyse, interpret and develop solutions for problems related to Chemistry in Society.
- > Design and Execute chemical systems for different applications

- Apply hands-on training and research knowledge to conduct investigations, interpretation and formulation of solution.
- Application of advanced methodologies in synthesis and analytical techniques for finding solution in various domains.
- Acquire the information on the environmental issues and apply the knowledge to monitor and provide solutions to overcome.
- > Able to work individually as well as in teams by institutionalizing the ethical values.
- > Motivate for continuous learning and acquire updates in the field.

VIJAYANAGARA SRI KRISHNADEVARAYA UNIVERSITY

JNANASAGARA CAMPUS, BALLARI-583105

Distribution of Courses/Papers in Postgraduate Programme I to IV Semester as per Choice Based Credit System (CBCS) for Chemistry

Semester	Catagory	Subject	Title of the Pener		Mark	8	Teaching hours/week		ıg eek	Cradit	Duration
No.	Category	code	The of the Laper	IA	Sem. Exam	Total	L	Т	Р	Creat	(Hrs)
	DSC1	21CHE1C1L	Concepts and Models in Inorganic chemistry	30	70	100	4	-	-	4	3
	DSC2	21CHE1C2L	Theoretical Organic Chemistry	30	70	100	4	-	-	4	3
	DSC3	21CHE1C3L	Kinetics and Electrochemistry	30	70	100	4	-	-	4	3
	DSC4	21CHE1C4L	Analytical methods and treatment of data	30	70	100	4	-	-	4	3
FIK51	SEC1	21CHE1S1LT	R and D and Quality control	20	30	50	1	1	-	2	2
	DSC1P1	21CHE1C1P	Inorganic chemistry Quantitative analysis	20	30	50	-	-	4	2	4
-	DSC2P2	21CHE1C2P	Organic Chemistry qualitative analysis	20	30	50	-	-	4	2	4
	DSC3P3	21CHE1C3P	Kinetics and Electrochemistry	20	30	50	-		4	2	4
	Total Marks for I Semester					600				24	

M.Sc. I-SEMESTER

M.Sc. II SEMESTER

Semester	Catagony	Subject	Title of the Depor	Marks		Teaching hours/week			Credit	Duration	
No.	Category	code	The of the Taper	IA	Sem. Exam	Total	L	Т	Р		(Hrs)
SECOND	DSC5	21CHE2C5L	Chemistry of Coordination compounds	30	70	100	4	-	-	4	3
	DSC6	21CHE2C6L	Reaction mechanisms in organic synthesis and Pericyclic reactions	30	70	100	4	-	-	4	3
	DSC7	21CHE2C7L	Electro, Quantum and Photochemistry	30	70	100	4	-	-	4	3
	DSC8	21CHE2C8L	Spectroscopic and Thermal methods	30	70	100	4	-	-	4	3
	SEC2	21CHE2S2LP	Research Methodology	20	30	50	1	-	2	2	2
	DSC5P4	21CHE2C5P	Preparation and analysis of Coordination compounds	20	30	50	-	-	4	2	4
	DSC6P5	21CHE1C6P	Synthesis of organic compounds	20	30	50	-	-	4	2	4
	DSC7P6	21CHE1C7P	Catalysis and photochemistry Practicals	20	30	50	-	-	4	2	4
		Total Marks fo	or II Semester			600				24	

M.Sc. III-SEMESTER

Semester				Marks			Teaching hours/week		Teaching ours/week Credit		Duratio n of
No.	Category	Subject code	Title of the Paper	IA	Sem Exam	Total	L	Τ	Р		exams (Hrs)
	DSC9	21CHE3C9L	Spectroscopy	30	70	100	4	-	-	4	3
	DSC10	21CHE3C10L	Chemistry of Heterocyclic Compounds	30	70	100	4	-	-	4	3
	DSE1	21CHE3E1AL	A. Polymer Science & Technology	30	70	100	4	-	-	4	3
		21CHE3E1BL	B. Nanomaterials and Applications								
		21CHE3E1CL	C. Applied Physical Chemistry								
	DSE2	21CHE3E2AL	A. Nuclear Chemistry and Materials Science	30	70	100	4	-	-	4	3
		21CHE3E2BL	B. Green Chemistry								
THIRD		21CHE3E2CL	C. Industrial Inorganic Chemistry								
	GEC1	21CHE3G1AL	A. Analytical techniques	20	30	50	2	-	-	2	2
		21CHE3G1BL	B. Separation and purification techniques								
		21CHE3G1CL	C. Environmental Chemistry and Waste management								
	SEC3	21CHE3S3P	Semi micro Qualitative Inorganic analysis	20	30	50	4		4	2	4
	DSC9P7	21CHE3C9P	Instrumentation/ Physical Chemistry Practicals	20	30	50	-	-	4	2	4
	DSC10P8	21CHE3C10P	Quantitative analysis of Organic functional groups	20	30	50	-	-	4	2	4
		Total Marks fo	r III Semester			600				24	

M.Sc. IV-SEMESTER

Semester		Marks		5	Teaching hours/week				Duration		
No.	Category	Subject code	Title of the Paper	IA	Sem. Exam	Total	L	Τ	P	Credit	of exams (Hrs)
	DSC11	21CHE4C11L	Bioinorganic and Organometallic chemistry	30	70	100	4	-	-	4	3
	DSC12	21CHE4C12L	Thermodynamics	30	70	100	4	-	-	4	3
	DSE3	21CHE4E3AL	A. Modern Organic synthesis	30	70	100	4	-	-	4	3
		21CHE4E3BL	B. Natural products of Biological Importance								
FOURTH		21CHE4E3CL	C. Bioorganic chemistry								
	DSE4	21CHE4E4AL	A. Advanced Chromatographic and Microscopic techniques	30	70	100	4	-	-	4	3
		21CHE4E4BL	B. Applied Analysis								
		21CHE4E4CL	C. Environmental and Biochemical Analysis								
	GEC2	21CHE4G2AL	A. Chemistry for daily life	20	30	50	2	-	-	2	2
		21CHE4G2BL	B. Water and food quality and laws								
		21CHE4G2CL	C. Agro and Environmental Chemistry								
	DSC11P9	21CHE4C11P	Spectral interpretation of data	20	30	50	-	-	4	2	4
	Project	21CHE4C1R	Project work	30	70	100		-	8	4	4
	,	Total Marks fo	r IV Semester			600				24	
(I-IV semester)- Total Marks: 2400 a						Tota	l credi	ts: 96)		

DSC – Department Specific Core, DSE – Discipline Specific Elective, SEC – Skill Enhancement Course, GEC – Generic Elective Course, IA – Internal Assessment, SEE – Semester End Examination, L – Lecture, T – Tutorial, P – Practical.

Course: Concepts and Models in Inorganic	Course Code: 21CHE1C1L
Chemistry	
Teaching Hours/Week (L-T-P): 4 - 0 - 0	No. of Credits: 04
Internal Assessment: 30 Marks	Semester End Examination: 70 Marks

M.Sc. Chemistry First Semester

Course Objectives:

- 1. Acquisition of skills in Inorganic Chemistry.
- 2. To impart essential theoretical knowledge on atomic structure, periodic properties and chemical bonding.
- 3. To develop the ability to correlate the chemical and physical properties of elements and their compounds with their positions in the periodic table.
- 4. Understand the theories in Inorganic Chemistry

Unit-I: Periodic properties and Ionic bond

Review of periodic properties- atomic size, ionization potential, electron affinity and electro negativity.

Ionic Bond:

Ionic bond-properties of ionic compounds, ionic radii, factors affecting ionic radii, radius ratio rules, types and structures of simple ionic compounds, lattice energy, Born-Lande equation, Kapustinskii equation, Born-Haber cycle-applications, size effects, polarizing power and polarizability of ions, Fajan's rule, covalent character in ionic compounds, solubility of ionic solids and hydration energy. **[8 hrs]**

Unit-II: Covalent Bond and Metallic Bond

VBT approach, VSEPR-shapes of molecules, concepts of resonance and hybridization, Energetics of hybridization, partial ionic character, covalent coordinate and multicentre bonding, M.O theory-LCAO approach, σ , δ and π molecular orbits. M.O treatment of homonuclear and heteronuclear diatomic molecules, Bond order in delocalized π - bonding systems, Ex: CO₃²⁻, NO₃⁻ and SO₃. Metallic bonding – electron sea model, VBT.

Coordination numbers, factors affecting coordination numbers, stereochemistry of coordination compounds. Non-stoichiometry, metal-metal bonding and cluster compounds.

[12hrs]

Unit-III: Chemistry of S and P-Block Elements

Alkali metals, alkaline earth metals and their complexes, crown ethers, oxides of alkali metals. Synthesis, properties and structure of boron hydrides, boranes, borazines, boron-phosphorus and boron-arsenic compounds.Oxides and oxy acids of nitrogen, phosphorus, sulphur and halogens.Interhalogen compounds and noble gas compounds, silicates and zeolites.

[12 hrs]

Unit-IV: Chemistry of d and f Block Elements

Chemistry of 3d,4d and 5d elements- trends in properties and spectral and magnetic behavior; stability of oxidation states and Catalytic properties. Chemistry of lanthanides and actinides-trends in physical and chemical properties, lanthanide contraction- causes and consequences.stereochemistry, magnetic and spectral behavior, synthesis and separation of transuranium elements, super heavy elements, Applications of Lanthanides. [12hrs]

Unit-V: Acid – Base Concept

Introduction different definitions, types of reactions, solvent systems and leveling effect.Generalized acid-base concept-basicity of metal oxides, hydration and hydrolysis.Measurement of acid – base strengths. Steric affects-back strain, front strain and internal strain. Solution effects with respect to liquid ammonia, anhydrous sulphuric acid, acetic acid and liquid sulphur dioxide, acetic acid, HF, N_2O_4 , super acids and molten salts. HSAB-classification & strength of hardness and softness.Irving-William's series.Theoretical basis of hardness and softness.

[12hrs]

REFERENCES

- 1. Inorganic Chemistry by Catherine E. Housecroft& Alan G. Sharpe 2nd Edition (2021)
- 2. Inorganic Chemistry by James E House (2021).
- 3. Inorganic Chemistry -5th Edition by Shriver & Atkins(2020).
- 4. Basic Inorganic Chemistry 3rd edition, F.A Cotton, G.Wilkinson and P.L.Gaw, John wiley and sons (2002).
- 5. Inorganic chemistry James E Huheey, Harper and Row Publishers (2004)
- 6. Concepts and Models of Inorganic Chemistry 3rd edition, B.E Douglas, D.H. Mc Daniel and Alexander, Wiley (2001)
- 7. Inorganic Chemistry 2nd edition, D.F Shriver, P.W.Atkins and C.H.Langtore Oxford University Press (1994).
- 8. Chemistry of Elements N.N. Greenwood and A.Earnshaw, Pergaman (2000).
- 9. Inorganic Chemistry 2nd edition, C.E Housecraft and A.G Sharpe, Pearson Education Ltd. (2005).
- 10. Concise Inorganic Chemistry J.D. Lee, ELBS 3rd edition (2017).

1.	Identify the nature of bonding exists between various elements.
2.	Apply fundamental chemical theories in interpretation of complex systems
3.	Interpret and apply the properties of s, p, d and f block elements for different applications.
4.	Apply the theories of acid base in Chemical reactions

Course: Theoretical Organic	Course Code: 21CHE1C2L
Chemistry	
Teaching Hours/Week (L-T-P): 4 - 0 - 0	No. of Credits: 04
Internal Assessment: 30 Marks	Semester End Examination: 70 Marks

- 1. To understand basic and fundamental theoretical aspects of organic chemistry.
- 2. To study the nature of bonding and aromaticity in organic compounds.
- 3. Evaluate the molecular geometry, hybridization and polarity of organic molecules.
- 4. To acquire the knowledge of substitution reactions occurring in organic molecules.
- 5. To understand electron delocalization and its effect on stability and reactivity

Unit-I: Nature of bonding in organic compounds and aromaticity

Concepts of bonding, hybridization-geomerty and shape of simple molecules.Delocalized chemical bonding, conjugation, Cross conjugation, resonance hyperconjugation, bonding in fullerenes, Tautomerism.

Aromaticity in the benzenoid and non-benzenoid compounds. Alternant and non-alternant hydrocarbons, *Hückel's* rule. The energy level of π M.O., Annulenes, anti-aromaticity, aromaticity, Homo aromaticity.

Bonds weaker than covalent, addition compound, crown ether complexes, and cryptands, Inclusion compound, cyclodextrins, Catananes& rotaxanes. [8hrs]

Unit-II: Stereochemistry

Elements of symmetry, concepts of chirality, optical isomerism, projection formulae, *Fisher*, *Sawhorse*, *Newman* and *Flying* wedge formulae and their inter-conversion, optical isomerism due to one or more than one chiral centers. Threo and erythro isomer, enantiomers, diastearic isomers, and epimers.

Optical activity in the absence of chiral carbon – Biphenyls and spiranes,

Optical isomerism of nitrogen compounds, conformational analysis of (cyclic and acyclic systems) – ethane, butane, mono & di-substituted cyclohexanes.

Geometrical isomerism – isomerism in ketoximes, aldoximes and Beckmann rearrangement.

[12hrs]

Unit-III: Aliphatic nucleophilic and electrophilic substitution reactions Aliphatic Nucleophilic Substitution:

 S_N^2 , S_N^1 , mixed S_N^2 and S_N^1 and SET mechanisms. The neighboring group mechanism, neighboring group participation by π and σ bonds.Common carbocation rearrangements.The S_N^i mechanism.Nucleophilic substitution at an allylic, aliphatic, trigonal, and vinylic carbon.Reactivity effects of substrate structure, attacking nucleophile, leaving group and reaction medium, phase transfer catalysis, ambident nucleophile, and regioselectivity.

Aliphatic Electrophilic Substitution:

Bimolecular mechanisms- S_E^2 and S_E^1 , electrophilic substitution accompanied by double bond shifts. Effect of substrates and the solvent polarity on the reactivity. [12hrs]

Unit-IV: Aromatic nucleophilic and electrophilic substitution reactions. Aromatic Nucleophilic Substitution:

 S_NAr , S_N1 , benzyne, and $S_{RN}1$ mechanisms, Reactivity-effect of substrate structure and attacking nucleophile. The VonRichter, Sommelet-Hauser, and smiles rearrangements.

Aromatic Electrophilic Substitution:

The arenium ion mechanism, orientation, and reactivity, energy profile diagrams. The ortho/para ratio, ipso attack, orientation in other ring systems.

Quantitative treatment of reactivity in substrates and electrophiles. Vilsmeyer reaction, Gattermann-
Koch reaction.[12hrs]

Unit-V: Reactive Intermediates and Named reactions

Types of mechanism, methods of determination of reaction mechanism-cross over experiments, product analysis, intermediates, isotopic labelling, stereochemical studies, thermodynamic and kinetic studies.

Reactive intermediates:Generation, stability, and reactivity of carbocations, carbanions, free radicals, carbenes, benzynes, and nitrenes.

Named reactions and rearrangements: Aldol, Perkin, Dickman condensation, Hofmann, Schmidt, Lossen, Curtius rearrangements, Reimer-Tiemann reaction, Wittig reactions and (Mechanism with examples). [12hrs]

REFERENCES:

- 1. March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structureby Michael B. Smith , Jerry March 6th edition (2021).
- 2. Organic Chemistry by Paula Bruice 8th edition (2016).
- 3. Reaction mechanism in organic chemistry S.M Mukharji & S.P Singh (1984).
- 4. Stereochemistry of Organic Compounds, Second Ed., D. Nasipuri, New Age International, (2005).
- 5. Stereochemistry of Organic Compounds, E. L. Eliel and S. H. Wilen, Wiley India, (2008).
- 6. Organic Chemistry, J. Clayden, N. Geeves and S. Warren, Oxford University Press, (2012).
- 7. A Guide Book to Mechanism in Organic Chemistry, Peter Sykes, Longman, (1985).
- 8. Advanced Organic Chemistry: Reactions, Mechanism, and Structure, March, Jerry, 6th edition, John Wiley, (2007).
- 9. Advanced Organic Chemistry, Carry, F. A.; Sundberg, R.J., 3rd edition, Plenum, (1990).
- 10. A Guide Book to Mechanism in Organic Chemistry, Sykes, Peter, 6th edition, Longman, (1989).
- 11. Organic Chemistry , Morrison, R. T.; Boyd, R. N., 6th edition, Prentice Hall, (1992).
- 12. Organic Reactions and their Mechanisms, Kalsi, P. S., 2nd edition, New Age International Publishers, (2000).
- 13. Named reaction in organic chemistry Surrey 2nd edition(1961).
- 14. Retrosynthesis to Asymmetric synthesis, Authors: Šunjić, Vitomir, Petrović Peroković, Vesna

1.	Acquire the basic and fundamental aspects of organic chemistry reactions.
2.	Interpret the molecular geometry, hybridization and polarity of organic
	molecules
3.	Recognize the existence of stereoisomerism and conformational analysis
4.	Capable to predict the mechanism of substitution reactions
5.	Apply the knowledge in nomenclature, identification of organic
	compounds

Course: Kinetics and Electrochemistry	Course Code: 21CHE1C3L
Teaching Hours/Week (L-T-P): 4-0-0	No. of Credits: 04
Internal Assessment: 30 Marks	Semester End Examination: 70 Marks

- 1. To understand physical phenomenas like Chemical thermodynamics and Chemical kinetics.
- 2. To study the nature of kinetics of reactions and electrochemical reactions.
- 3. Evaluate the basics and applications chemical thermodynamics.
- 4. To acquire the knowledge of catalysis and electrochemistry in solution state.
- 5. To understand basics of corrosion, corrosion control and its applications,

Unit- I: Chemical Thermodynamics:

A brief resume of laws of thermodynamics, Concepts of entropy and enthalpy, concept of fugacity and free energy, entropy and free energy changes and spontaneity of processes. Variation of equations of state, limitations of Van't Hoff's equation, Nernst Heat theorem & its applications.

Application of Thermodynamics:

Partial molar quantities, partial molar volume and free energy (chemical potential), their significance and determinations. Gibbs- Duhem and Duham-Margules equations (statement and derivation)

Thermodynamics of Ideal Solutions:

Deductions of Raoult's law for ebullioscopy, cryoscopy and osmotic pressure. Thermodynamic treatment of Le-Chatelier principle.

Thermodynamics of Non-ideal Solutions: Activity, activity coefficient-standard states.

[12hrs]

Unit-II: Chemical Kinetics

Theories of Reaction Rates:

Activated complex theory and its applications in solution reaction. Theory of unimolecular reactions- Lindeman, Hinsel-Wood and RRKM theory

Chemical Kinetics:

Complex reactions- parallel, consecutive and reversible reactions. Chain reactions (H_2 -halogen reactions). Branched chain reactions- general rate expression. Photochemical (H_2 -halogen reactions)

Reactions in Solution:

Ionic reactions - salt and solvent effects. Substituent effects on the rates of reactions, linear free energy relationships - Hammett and Taft equations.

[12 hrs]

Unit-III: Catalysis

Homogeneous catalysis-equilibrium and steady state treatments, activation energies of catalyzed reactions. Acid-base catalysis, measurements of catalytic activity. Kinetics of enzyme catalyzed reactions-Michaelis- Menten equation. Effect of pH, temperature & inhibitors. Industrial applications of catalysts.

Surface Reaction Kinetics:

A review of adsorption isotherms, Gibb's adsorption isotherm, multilayer adsorption-BET equation (derivation)- application in surface area determination. Harkin-Jura equation (derivation)- application. Heterogeneous catalysis-catalytic activity at surfaces.

[12 hrs]

Unit-IV: Electrochemistry - I

Electrochemistry of Solutions:

Ionic atmosphere, physical significance of k (Cuppa), Faraday's laws of electrolysis, Debye-Huckel limiting law, Debye-Huckel equation for appreciable concentration. Huckel and Bronsted equation. Qualitative verification of Debye-Huckel equation, Ostwald's dilution law, Bjerrum theory of ion association- triples ion- conductance minima.

[8 hrs]

Unit-V:Corrosion Science

Corrosion- Introduction, definition, examples. General mechanism, Factors affecting corrosion reactions. Types of corrosion with examples. Electrochemical theory of corrosion of iron metal, Hydrogen embritlement and passivation of metals

Corrosion control: Metal coatings (Galvanisation and Tinning process), inhibitors. Cathodic Protection, Anodic protection and Electrochemical methods of protection.

Industrial Corrosion: Corrosion in Boiler, Acidic corrosion, Alloying and dealloying. Corrosion in petrochemical industries.

[12hrs]

REFERENCES:

1. The Laws of Thermodynamics Peter Atkins (2010)

2. *Atkins' Physical Chemistry 11th Edition* Peter Atkins, Julio de Paula, James Keeler (2018).

- 3. PhysicalChemistry,Atkins(ELBS), 5thEd (1995).
- 4. PhysicalChemistry-G.M.Barrow,McGrawHill,Int.St.Ed(1988).
- 5. Fundamentalsof PhysicalChemistry-MaronandLando, CollierM acmillan, (1974).
- 6. ThermodynamicsforChemists-S.Glasstone, East-west, (1973).
- 7. Themodynamics-RajaramandKuriokose(East-West) (1986).
- 8. ChemicalKinetics-K.J.Laidler,HarperandRow,(1987).
- 9. Electrochemistry-Glasstone, Affiliated to East-West, Press, (1942).
- 10. PrinciplesandApplicationsofElectrochemistry-Crow, Chapmanhall,London, (1988).

11. Engineering Chemistry, P.C. Jain and Monica Jain, Dhanpat Rai Publications, New Delhi (2015).

12. Introduction to Corrosion Science, E. Mc Cafferty, Springer, (2010).

1.	Able to analyse Thermodynamics as well as kinetics of reactions.
2.	Evaluate the kinetics of chemical reactions with step wise mechanisms
3.	Apply of thermodynamics to ideal and non ideal solutions
4.	Integrate the knowledge of catalysis, multilayer adsorption and surface
	reactions
5.	Interpret the electrochemical behaviour in solution state and surface
6.	Analyse and solve the corrosion process

Course: Analytical Methods and	Course Code: 21PHY1C4L
Treatment of data	
Teaching Hours/Week (L-T-P): 4-0-0	No. of Credits: 04
Internal Assessment: 30 Marks	Semester End Examination: 70 Marks

- 1. To understand the concepts of classical methods of analysis like titirmetry, gravimetry.
- 2. To gain knowledge of purity and separation techniques
- 3. To acquire basics of electroanalytical techniques
- 4. To inculcate the skills for chemical analysis and treatment of data

Unit – I: Errors and Sampling

Analytical techniques and methods, method validation, Limitations of analytical methods. Classifications of errors, accuracy, precision, minimization of errors, significant figures and computations, mean, relative and standard deviation, distribution of random errors, relativity of results. Confidence interval, comparison of results, comparison of the means of two samples, Significance tests Q-test, F-test, Paired t-test for the number of replicate determinations, comparison of more than two means (analysis of variance),.Correlation and regression, linear regression, Least square method. Analysis- Calibration, standard addition, internal standardisation, internal normalization, external standardisation. Quality control and quality assurance. Importance of sampling, the basis of sampling, sampling procedure, sampling statistics, sampling and physical state, crushing and grinding, hazards in sampling. [12 hrs]

Unit – II: Titrimetic analysis:

Acid base titrations:

Principle, role of solvent in acid-base titrations, effect of concentration. Titration curves for strong acid - strong base, weak acid – strong base, weak base –strong acid, Poly protic acids, poly equivalent bases, determination of equivalence point – theory of acid base indicators, colour change range of indicators. Applications for nitrogen, nitrates and carbonates andorganic functional groups like carboxylic acid, sulphonic acid, amine, ester, hydroxyl, carboxyl groups.

Oxidation – **Reduction Titrations:**

Redox process-balancing redox equations, titration curves .Redox indicators, detection of end point, visual indicators and potentiometric end point detection. Quantitative applications-adjusting the analyte's oxidation state, determination of chemical oxygen demand (COD) in natural and waste waters and other applications. Titrations of mercaptans and ascorbic acid with I_3^- and titration of organic compounds using periodate. Karl Fischer reagent for water determination.

Complexometric Titrations:

Introduction, complexation reaction, titration curves, types of EDTA titrations, titrations of mixtures, selectivity, masking and demasking agents, metal ion indicators, some practical considerations. Applications of EDTA titrations- hardness of water, magnesium and aluminium in antacids, magnesium, manganese and zinc in a mixture. [12hrs]

Unit- III: Precipitation and Gravimetric analysis:

Precipitation Titrations:

Precipitation reactions, titration curves, factors influencing the sharpness of end points, completeness of the reaction. Chemical indicators - Volhard, Mohr and Fajan's methods. Precipitation titrations involving silver nitrate. Applications.

Organic Reagents in Inorganic Analysis:

Organic precipitants, general properties, reagents as precipitants (DMG, 8-hydroxy quinoline, acetyl acetone, etc).

Gravimetric analysis:

Introduction, precipitation methods, the colloidal state. Requirements & conditions of precipitations, co-precipitation, post precipitation, nature of the precipitate, super saturation, precipitation from homogeneous solution and effect of excess of precipitant, temperature, pH and complex formation on completeness of precipitation, washing the precipitate and peptization. Fractional precipitation, organic precipitants, volatilization or evolution methods. Filtration, washing, drying and ignition of precipitates. [8 hrs]

Unit-IV: Separation Techniques

Basic separation techniques in analysis, classification.

Solvent Extraction:

Principle, distribution law. Choice of solvents for extraction, factors affecting extraction-pH and oxidation state, masking and salting out agents. Techniques-batch, continuous and multiple extractions and synergic extraction. Applications

Paper and thin layer Chromatography:

General principles and mechanism, classification of chromatographic methods-paper, thin layer, column and liquid chromatography. Selection of stationary and mobile phases, preparation of micro and macro plates, development, spray reagents, identification and detection, reproducibility of Rf values, qualitative, quantitative analysis and applications of TLC.

Ion Exchange Chromatography:

Definitions, requirements for ion exchange resin, principle, basic features of ion exchange reactions, types of ion exchange resins, ion exchange capacity, resin selectivity. Synthesis and factors affecting the selectivity. Process of elution and Applications in preparative, purification and recovery processes.

[12 hrs]

Unit - V: Electroanalytical techniques

Introduction and requirements

Conductometry:

Theory- Measurement of Conductivity - Basis for Conductometric titrations. Conductometry as an analytical tool.

Potentiometry:

Principles, Reference electrodes, indicator electrodes, selective electrodes, Membrane electrodes. Glass electrodes for the measurement of cations other than hydrogen,pH measurement, measurement of cell emf - potentiometric titrations.Solid state electrodes, liquid membrane electrodes. Ion-selective field effect transistors (ISFETS). Gas sensing electrodes. Chemical and environmental applications. Potentiometric titrations- acid-base, precipitation and redox titrations. Null-point potentiometry. **Voltametry :**

Polarography - Direct current and AC Polarography - Theory - Dropping Mercury Electrode-Quantitative technique - Measurement of Wave Heights - Pulse Polarography - Rapid Scan Polarography. Applications-electrochemical reversibility and Stripping Voltametry - Cyclic Voltametry-Principles and applications. Modified electrodes. Voltammetry with micro electrodes.

Amperometry : Pricnciples, amperometric titrations with examples. Biamperometry.

Electrogravimetry: Theory, completeness and nature of the deposit, instrumentation, electrolytic separation of metals and applications. [12 hrs]

REFERENCES:

- 1. Analytical Chemistry 2.1David Harvey, DePauw University (2016).
- **2.** Analytical Chemistry by Gary D. Christian,7th Edition , (2014).
- **3.** Fundamentals of Analytical Chemistry D.A Skoog, D.M West, Holler and Crouch, Saunders College Publishing, 8th edition, (2005).
- **4.** Analytical Chemistrym G.D Christian, John Wiley and Sons Inc, 5th edition, (2001)
- **5.** Vogel's Test book of Quantitative Chemical Analysis, J. Mendham, R.C Denny, J.D Barnes and M.J.K Thomas, 6th edition, (2003).
- 6. Modern Analytical Chemistry, David Harvey, McGraw Hill, New Delhi, (2000).
- 7. Instrumental Methods of Analysis, H.H Willas, L.L Merritt and J.A Deay, 7th edition, (1988).
- 8. Instrumental Methods of Analysis, W.M Dean and Settle, 7th edition, (1986).

1.	Apply basic analytical methods for chemical analysis
2.	Evaluate and treat the analytical data
3.	Apply the separation techniques in separation and purification
4.	Design and interpret the analytical data

Course: R &D and Quality control	Course Code: 21CHE1S1LP
Teaching Hours/Week (L-T-P): 1-1-0	No. of Credits: 02
Internal Assessment: 20 Marks	Semester End Examination: 30 Marks

- 1. Students acquire basic knowledgeable industries and research.
- 2. To understand the functioning of Research and Development and quality control.

Unit-I: Research and Development

Industry: Types of chemistry related industries; Sections and responsibilities

Research & Development:

Importance, Process development & product development, In-house failure and addressing; Design & executions of reactions.

Chemistry software: Chemdraw ; Scifinder; Computational Chemistry(Docking)

Production: Control & Execution; Testing of In-house failure products.

[10 hrs]

Unit-II: Quality Control & Quality Assurance Quality Control:

Functions & Responsibilities, Method development and validation, analytical parameters –LOD, LOQ **Quality Assurance:**

Functions & Responsibilities. 6 sigma concept and ISO accreditation. Total Quality Management perspective, methodologies and procedures; Roadmap to TQM, ISO 9000, KAIZEN, Quality Circles, Models for organizational excellence

Application of Software tools and Case Studies.

Intellectual Property rights and Pharmaceuticals

Unit-III: Safety practices and Environmental treatment plant

Safety Apparels in Industries: Precautions, Safety Apparels, handling of toxic and explosives, first aid in case of emergency and medications.

Environment treatment plant: Regulatory requirements, control, monitoring and treatment of treatment liquid and solid waste treatment; Recovery, incineration and Toxic metals treatment.

Preparation for the interview:

How to face an interview?.

[8 hrs]

[10 hrs]

REFERENCES:

1. Research Design: Qualitative, Quantitative and Mixed Methods Approaches by Creswell (2014).

2. Research Methods: A Practical Guide For Students And Researchers 1st Edition.

3.Perfect Quality Assurance & Quality Control Paperback – Import, 19 by Ram Babu Sao November (2016).

4. Essential environment Jay H. Withgott 09 September (2021).

5. How to Write the Perfect Resume: Stand Out, Land Interviews, and Get the Job You Want by Dan Clay.

1.	Design new reactions
2.	Analyse and interpret the analytical data
3.	Skills for industries

Course: Inorganic Chemistry	Course Code: 21CHE1C1P				
Quantitative analysis					
Teaching Hours/Week (L-T-P): 0 - 0 - 4	No. of Credits: 02				
Internal Assessment: 20 Marks	Semester End Examination: 30 Marks				

- 1. Hands-on training for quantitative estimation using volumetric and gravimetric analysis.
- 2. Understand the importance of determination of common metallic traces affecting the biological system.
- 3. Understand and appreciate common useful methods of detection of traces of elements.

List of Experiments:

- 1. Determination of iron using KMnO₄ (0.02M) and ceric ammonium sulphate (0.02M) as titrants.
- 2. Determination of calcium using $KMnO_4$ (0.02M) as titrants.
- 3. Determination of copper volumetrically using KIO₃.
- 4. Estimation of calcium and magnesium carbonates in dolomite solution using EDTA titration.
- 5. Estimation of lead using EDTA titration.
- 6. Gravimetric analysis of sulphate with barium.
- 7. Gravimetric analysis of iron.
- 8. Determination of nickel gravimetrically using dimethyl glyoxime.
- 9. Separation and determination of two metal ions, iron and nickel by volumetric and gravimetric methods.
- 10. Separation and determination of two metal ions, copper and iron by volumetric and gravimetric methods.
- 11. Separation and determination of two metal ions, calcium and iron, by volumetric and gravimetric methods.
- 12. Determination of Aluminium by EDTA method.

REFERENCES

- 1. A text book of quantitative inorganic analysis- A.I.Vogel, 3rd edition, 5th edition. .
- 2. Quantitative chemical analysis Daniel, C.Harris, 7th edition,(2006).

1.	Analyse binary and complex mixtures of metallic ions by volumetric and gravimetric
	methods
2.	Design procedure for the quantification of inorganic compounds in various samples
3.	Analyze an experimental procedure and suggest improvements.
4.	Interpret the analytical data to comply with regulatory standards

Course: Qualitative Analysis of Organic	Course Code: 21CHE1C2P
Binary Mixtures	
Teaching Hours/Week (L-T-P): 0-0-4	No. of Credits: 02
Internal Assessment: 20 Marks	Semester End Examination: 30 Marks

- 1. Expose to simple synthetic procedures in the laboratory.
- 2. Correlate theoretical concepts for preparing, purifying, and identifying organic molecules.
- 3. Comply with safety rules in conducting laboratorial experiments.
- 4. To identify the components through various steps, derivative preparation, checking the purity of components.

List of Experiments

1. Systematic qualitative analysis and separation of organic binary mixtures (solid + solid) and their identification through various steps, derivative preparation, checking the purity of components by melting point (minimum 10 mixtures).

NOTE: In the examination, a candidate has to separate the binary mixture and analyze one component indicated by the examiner.

REFERENCES

- 1. Macroscale and Microscale Organic Experiments, K. L. Williamson, D. C. Heath, 7th Ed., (2011).
- 2. Qualitative Analysis of Organic Compounds byA.I. Vogel 4thEdition.
- 3. Vogel's Textbook of Practical Organic Chemistry, Ed. 5, Longman, (1989).
- 4. Experiments and Techniques in Organic Chemistry, Pasto, Johnson and Miller, Prentice Hall, (1992).
- 5. Systematic Qualitative Organic Analysis, H. Middleton, Edward Arnold.
- 6. Handbook of Organic Analysis-Qualitative and Quantitative, H. Clark, Adward Arnold.

1.	Analyse and separate complex organic mixtures
2.	Design experimental approach for purification of organic compounds
3.	Develop methodology for synthetic reaction and characterization
4.	Hands on training in determining melting point, boiling point, TLC etc

Course: Kinetics and Electrochemistry	Course Code: 21CHE1C3P				
Practicals					
Teaching Hours/Week (L-T-P): 0-0-4	No. of Credits: 02				
Internal Assessment: 20 Marks	Semester End Examination: 30 Marks				

- 1. Study Kinetics of chemical reactions
- 2. To understand varied solvents interaction by phase formation mechanism
- 3. Analysis of samples using conductometric techniques

List of Experiments

- 1. Study of kinetics of hydrolysis of an ester using HCl/H₂SO₄ at two different temperatures, determination of rate of constants and energy of activation.
- 2. Study of kinetic reactions between K₂S₂O₈ and KI, first order, determination of rate constants at two different temperatures and Energy of activation.
- 3. Conductometric titration of mixture of HCl and CH₃COOH against NaOH.
- 4. Conductometric titration of mixture of HCl and CH₃COOH and CuSO₄ against NaOH.
- 5. Conductometry-To determine the degree of hydrolysis and hydrolysisconstant of aniline hydrochloride.
- 6. Conductometric titration of potassium iodide with mercuric perchlorate.
- 7. Phase diagram for Three component liquid system, acetic acid, benzene and water.
- 8. Kinetics of dissociation of trichloroacetic acid.

REFERENCES

- Experimental Physical Chemistry: A Laboratory Textbook, A. Halpern & G. McBane III Ed. W. H. Freeman (2006)
- 2. Practical Physical Chemistry- A.J.Findlay (2007).
- 3. Experimental Physical Chemistry-F.Daniel et el (2006).
- 4. Selected Experiments in Physical Chemistry- Latham (1974).
- 5. Experimental Physical Chemistry- Janes and Parichard 3rd edition (1974).
- 6. Experimental Physical Chemistry- Shoemaker 5th edition (1989).
- 7. Experimental Physical Chemistry- Yadav, Goel Publishing House.
- 8. Experimental Physical Chemistry- Das R.C and Behera B., Tata Mc Graw Hill.

1.	Skills in analysis of physical properties of materials and reactions
2.	Analyse and interpretation of physical properties
3.	Designing of methods for ionic substances
4	Evaluate the kinetics of reaction

VIJAYANAGARA SRI KRISHNADEVARAYA UNIVERSITY jnanasagara campus, ballari-583105

Department of Studies in Chemistry

SYLLABUS

Master of Science (I-IV Semester)

With effect from: 2021-22

		Subject code	Title of the Paper	Marks			Teaching hours/week				Duration
Semester No.	Category									Credit	of exams
				IA	Sem. Exam	Total	L	T	P		(Hrs)
	DSC5	21CHE2C5L	Chemistry of Coordination compounds	30	70	100	4	-	-	4	3
	DSC6	21CHE2C6L	Reaction mechanisms in organic synthesis and Pericyclic reactions	30	70	100	4	-	-	4	3
	DSC7	21CHE2C7L	Electro, Quantum and Photochemistry	30	70	100	4	-	-	4	3
SECOND	DSC8	21CHE2C8L	Spectroscopic and Thermal methods	30	70	100	4	-	-	4	3
	SEC2	21CHE2S2LP	Research Methodology	20	30	50	1	-	2	2	1.5
	DSC5P4	21CHE2C5P	Preparation and analysis of Coordination compounds	20	30	50	-	-	4	2	4
	DSC6P5	21CHE2C6P	Synthesis of organic compounds	20	30	50	-	-	4	2	4
	DSC7P6	21CHE2C7P	Electro, photochemistry and Catalysis Practicals	20	30	50	-	-	4	2	4
Total Marks	Total Marks for II Semester				600				24		

Distribution of Courses/Papers in Postgraduate Programme I to IV Semester as per Choice Based Credit System (CBCS) Proposed for PG Program in Chemistry

Dept Name: Chemistry Semester-II

DSC5: Chemistry of Coordination compounds

Course Title: Chemistry of Coordination compounds	Course code: 21CHE2C5L
Total Contact Hours: 56	Course Credits: 04
Formative Assessment Marks: 30	Duration of ESA/Exam: 3 h
Summative Assessment Marks: 70	

Course Outcomes (CO's):

- 1. To understand the general characteristics of the d and f block elements, organometallic compounds, metal carbonyls and metal clusters, thorough knowledge of the different theories to explain the bonding in coordination compounds.
- 2. To study the nature of various metal complexes and calculate various parameters.
- 3. Study the existence of stereoisomerism in transition metal complexes.
- 4. To study the magnetic and spectral properties of metal complexes.
- 5. To understand electron delocalization and its effect on stability and reactivity

At the end of the course, students will be able to:

- 1. The subject is designed to strengthen the basic knowledge in the field of complex chemistry and to impart recent advances in the transition metal complex chemistry.
- 2. Acquisition of knowledge of Geometry, Magnetic and Spectral Properties of Metal Complexes.
- 3. Will gain in-depth knowledge of d and f block elements, coordination compounds and organometallic compounds which is essential for future career and competitive exams.

Unit	Description	Hours					
	Metal-Ligand Bonding						
	Review of bonding theories:						
	Valence Bond Theory (VBT): Coordinate covalent bonding in metal						
	complexes, applications of VBT in tetrahedral, Square-planar and Octahedral						
	complexes, Limitations of VBT.						
	Crystal Field Theory (CFT): Salient features, crystal field splitting of d						
1	orbitals in octahedral, tetrahedral, tetragonal and square planar fields.	12					
	Magnitude of Δ , factors affecting Δ , crystal field stabilization energy						
	(CFSE), effects of crystal field splitting. Spectrochemical series,						
	nephelauxetic series, short comings of CFT, evidences for covalence						
	character, John-Teller distortion in metal complexes.						
	Molecular Orbital Theory (MOT): Treatment of co-ordination compounds						
	involving σ and π bondings.						
\mathbf{r}	Spectral Properties of Complexes:	8					
۷	Term symbols for d ⁿ ions, spectroscopic ground states, selections rules, nature	2					

		of spectral bands-band shapes and bond intensities, band widths, effect of spin				
	orbit coupling, Orgel diagrams, Tanabe-Sugano diagrams, Racah parameters					
		interpretations of spectra of octahedral, distorted octahedral, tetrahedral and				
		square planar complexes. Calculations of nephelauxetic parameter, Charge				
		transfer bands, Interference of charge transfer bands.				
		Geometry and Magnetic Properties of Metal Complexes:				
		Geometry: Stereochemistry, coordination numbers 3 to 8, isomerism in				
		metal complexes, geometrical isomerism, optical isomerism, coordination				
		isomerism, ionization isomerism, linkages isomerism.				
3		Magnetic Properties of Metal Complexes: Types of magnetic behavior,	12			
		classical magnetism, orbit coupling, measurement of magnetic susceptibility-				
		Gouy and Faraday methods, diamagnetic corrections, ferro and anti-ferro				
		and ferri magnetism, spin cross-over systems.				
-		Metal-Ligand Equilibria in Solution:				
		Step-wise and over-all formation constant and their relationships.				
		trends in step-wise constant, kinetic and thermodynamic stability of metal				
		complexes, factors affecting the stability of metal complexes with reference				
4		to the nature of the metal ion and ligand, chelate and macro cyclic effects	12			
		and their thermodynamic origin, determination of binary formation constants				
		by pH meter, spectrophotometry, polarography and by ion exchange				
		methods.				
		Reaction Mechanisms in Transition metal Complexes:				
		Energy profile of a reaction, inert and labile complexes. Kinetics				
		of octahedral substitution and Mechanistic aspects, substitution reactions in				
		square planar complexes, trans effect, molecular rearrangements of four and				
5		six coordinated complexes.	12			
		Electron Transfer Reactions (Redox Reactions):				
		Inner and outer sphere mechanisms, one electron, two electron,				
		complimentary and non complimentary electron-transfer reactions.				
R	efere	ences:				
	1.	Shriver and Atkin's Inorganic Chemistry, Atkins, Overton, Rourke, Weller, Ar	mstrong,			
		5 th Ed, Oxford University press, (2012).				
	2.	Concise Coordination Chemistry, R Gopalan and V Ramalingam, Vikas Pu	ublishing			
		House Pvt Ltd., New Delhi, (2005).				
	3.	Basic Inorganic Chemistry, F.A.Cotton, G.wilkinson and P.L.Gau, Jhon W	iley and			
		sons, Inc, 6 th edition, (1999).				
	4.	Inorganic Chemistry, J.E.Huheey, E.A.Keiter and R.L.Keiter, 4 th edn,(1993).				
	5.	Chemistry of the Elements, N.N.Greenwood and A.E.Earnshaw, Butt	rerworth			
		Heilemann, (1997).				
	6.	Essential Trends in Inorganic Chemistry, D.M.P.Mingos, Oxford univ press,(19	98).			
	7. Chemistry of Complex Equilibria, M.T Beck, Rinhold, London, (1990).					
	8.	Magnetochemestry, R.L.Carlin, Springer Verlag <u>Volume</u> 92, <u>Issue</u> 3, März,(1988)).			
	9.	Coordination Chemistry, Fred Basolo and Ronald C. Johnson, Wile	y, New			

Date

Course Coordinator

Subject Committee Chairperson

DSC6: Reaction mechanisms in organic synthesis and Pericyclic reactions

Course Title: Reaction mechanisms in organic synthesis and Pericyclic reactions	Course code: 21CHE2C6L
Total Contact Hours: 56	Course Credits: 04
Formative Assessment Marks: 30	Duration of ESA/Exam: 3 h
Summative Assessment Marks: 70	

Course Outcomes (CO's):

- 1. To instruct students on the fundamental concepts of organic chemistry as well as their applications.
- 2. To understand the heterocyclic compounds and natural compounds which comprise the major part of organic chemistry.
- 3. To gain the useful knowledge on various reaction mechanism and structural activity of organic compounds.
- 4. To acquire advance knowledge of carbon-carbon and carbon-hetero atomic bonds.
- 5. To study the various useful organic reagents used in pharmaceutical industries for synthesis of drugs.
- 6. To acquint with principles of pericyclic reactions and their progress forward or backwards.
- 7. Cycloaddition reactions and Sigmatropic reactions and rules governing them.

At the end of the course, students will be able to:

- 1. Get familiarize with heterocyclic compounds, natural products and reagents in organic synthesis. Heterocyclic compounds play an important role in pharmaceuticals.
- 2. Interpret the concept of reaction mechanism in the transformation from reactant to product.
- 3. Interpret the mechanistic and stereochemical aspects of carbon-carbon bonds and carbon-hetero atomic bonds.
- 4. Able to use various reagents in organic synthesis and functional group transformation.
- 5. Capable to design pericyclic reaction and carry out these types of reaction.

Unit	Description	Hours
	Reaction mechanism and structure reactivity	
	Reaction mechanism: Types of mechanism, types of reactions,	,
	thermodynamics and kinetic requirement. Kinetic and thermodynamics	
	control, Hammond's postulate, Curtin-Hammett Principle, Potential energy	
	diagrams, transition states and intermediates, method of determining	
1	mechanisms, isotope effects.	12
	Free radical reactions: Types of free radical reactions, free radical	
	substitution mechanism at an aromatic substrate, neighboring group	
	assistance. Reactivity for aliphatic and aromatic substrates at a bridge-head.	
	Reactivity of the attacking radicals. The effect of solvents on reactivity.	
	Coupling of alkynes and arylation of aromatic compounds by diazonium	

	salts. Sandmeyer reaction. Free Radical Rearrangement. Hunsdiecker reaction.	
	Elimination reactions: The E2, E1, and E1cB mechanisms and their	
	spectrum. Orientation of the double bond. Reactivity effects of substrate	
	structure, attacking the base, the leaving group, and the medium.	
	Reactivity of carbon-carbon multiple bonds:	
	Mechanistic and stereochemical aspects of addition reaction involving	
2	electrophiles, nucleophiles, and free radicals. Regio, and chemoselectivity,	8
_	orientation and reactivity. Addition to cyclopropane ring.Hydrogenation of	
	double and triple bonds, hydrogenation of aromatic ring.	
	Hydroboration.Michael reaction.Sharpless asymmetric epoxidation.	
	Reactivity of carbon-hetero multiple bonds	
	Mechanism of metal hydride reduction of saturated and unsaturated carbonyl	
2	compounds, acids, esters, and mitriles. Addition of <i>Grighara</i> reagents,	12
3	compounds <i>Wittig</i> reaction Mechanism of condensation reactions involving	12
	enolates-Aldol Knoevenagel Claisen Mannich Benzoin Perkin and	
	Stobbereactions. Hydrolysis of esters and amides, ammonolysis of esters.	
	Reagents in Organic Synthesis	
	Use of following reagents in organic synthesis and functional group	
	transformation	
	1. Dicyclohexylcarbodiimide (DCC)	
	2. Woodward and Prevost hydroxylation	
	3. 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ)	
	4. Phase transfer catalysis	
4	5. Crown ethers	12
	6. Dess–Martin periodinane (DMP)	
	7. Merrifield resin	
	8. Peterson's synthesis	
	9. Wilkinson's catalyst	
	10. Gilman's reagent	
	11. Ziegler–Natta catalyst .	
	Pericyclic reactions	
	Definition, classifications of Pericyclic reactions. Molecular orbital	
	symmetry, Frontier orbital of ethylene, 1,3 butadiene, 1.3.5-Hexa triene, and	
	allyl systems. Woodward and Hoffmann correlation diagram. FMO & PMO	1
E	approach, electrogatic reactions-conrotator, and disrotatory motions, 4n,	10
5	4n+2, and ally systems.	12
	Cycloaddition – antrafacial and suprafacial additions, 4n and $4n+2$ systems,	
	2+2 addition of kelenes. 1, 5 dipolar cycloadditions and cheleotropic reactions. Sigmatropic rearrangements, superfacial and antrafacial shifts of	
	H shifts involving carbon mojeties 3 3-and 5 5 $-$ signatronic	
	rearrangements Claisen Cope and Azo cope rearrangements	
Refere		
1.	March's Advanced Organic Chemistry: Reactions, Mechanisms, and Struct	ture, 7th

Edition, Michael B. Smith, WILEY, (2013).

- 2. Advanced Organic Chemistry PART A and PART B., F. A. Carey and R. J. Sundburg, Springer (2007).
- 3. Organic Chemistry, J. Clayden, N. Geeves and S. Warren, Oxford University Press, (2012).
- 4. Organic Chemistry, Morrison, Boyd and Bhattcharjee, &th Edition, Pearson, (2010).
- 5. A Guide Book to Mechanism in Organic Chemistry, Peter Sykes, Longman, (1985).
- 6. Pericyclic Reactions, S. M. Mukherji, Macmillan, India, (1980).
- 7. Reaction Mechanism in Organic Chemistry, S. M. Mukherji and S. P. Singh, Macmillan., (1984).
- Advanced Organic Chemistry: Reaction Mechanism, R Bruckner, Harcourt (India) Pvt. Ltd., (2001).
- 9. Reactions Mechanism in Chemistry, Vol. I, II, III, Mukherji, S.M.; Singh, S.P. Macmillan, (1985).
- 10. Stereochemistry of Organic Compounds, Nasipuri, D. 2nd edition New Age International Publishers, (1994).
- 11. Stereochemistry of Organic Compounds, Kalsi, P.S. 2 edition, New Age International,
- 12. Stereochemistry: Conformation and Mechanism, Kalsi, P.S., 2nd edition, Wiley Eastern Limited, (1993).
- 13. Textbook of Organic Chemistry-R.J.Moorism and Boyd 7th edition.
- 14. Textbook of Advanced Organic Chemistry-Arun Bhal,(2010).

Date

Course Coordinator

Subject Committee Chairperson

Course Title: Electro,Quantum and Photochemistry	Course code: 21CHE2C7L
Total Contact Hours: 56	Course Credits: 04
Formative Assessment Marks: 30	Duration of ESA/Exam: 3 h
Summative Assessment Marks: 70	

Course Outcomes (CO's):

- 1. To Understand the theoretical and basic aspects of basics and applied electrochemistry
- 2. To acquire knowledge of quantum chemistry.
- 3. To learn the concept of photochemistry

At the end of the course, students will be able to:

- 1. Acquire fundamental and basic knowledge of electrochemistry and apply for electrochemical systems
- 2. Able to understand the photochemistry principles and reactions
- **3.** Able to apply quantum chemistry approaches in different reactions.

Unit	Description	Hours
1	Theortical Electrochemistry and Energy sources Debye-Huckel theory of strong electrolytes, Debye Huckel – Onsager equation, Debye – Huckel limiting equation for activity coefficients. Debye- Falkenhagen effect, Electrical double layer and its thermodynamics. A brief survey of Helmholtz – Perrin, Gouy – Champman and Stern electrical double layer, liquid junction potential and its determination. Molar ionic conductance and Stokes's law. Electrochemical energy sources – Batteries, characteristics, classification- primary, secondary. Fuel cells: working principle (H ₂ -O ₂ , CH ₃ OH-O ₂), Applications	8
2	Irreversible Electrode Process: Introduction, reversible and irreversible electrodes, Ohmic overvoltage, concentration overvoltage, activation overvoltage. Hydrogen over voltage and oxygen over voltage. Effect of temperature, current density and pH on over voltage. Experimental determination of over voltage. Equations for concentration over potential, diffusion current, stationary current, ionic product of water, Solubility product.Polarography- half wave potential, application in qualitative and quantitative analysis. Energy barrier and electrode kinetics, Buttler-Volmer equation, Tafel equation.	12

	Quantum Mechanics:	
	Wave-particle duality of material particles de Broglie equation	
	Heisenberg uncertainty principle Concept of operators (operator –	
	operand), algebra of operators, commutative and non commutative	
	operators, linear operators, Laplacian operator, Hamiltonian operator.	
	Eigen value. Eigen function. Hermitian operator. Postulates of quantum.	•
3	mechanics. Schrodinger wave equation for particles. Applications of	2
	Schrodinger equation for particle in one and three dimentional box.	
	Application of Schrodinger equation to rigid rotator and harmonic	
	oscillator. Perturbation theory, method-first order and second order	
	correction, application to He – atom (first order correction only)-	
	calculation of first ionization, potential and binding energy. Variation	
	theorem statement and derivation.	
	Photochemistry:	
	Introduction to photochemistry, photochemical laws, Absorption and	
	emission, Jablonski diagram, Singlet and triplet states, Origin of	
	energy difference between singlet and triplet states, selection rules for	
4	electronic transition. Laws of photochemistry, Franck-Condon 12	2
	principle, fluorescence, phosphorescence, Factors affecting	
	Fluorescence and Phosphorescence, Life time of an excited state. Stark-	
	Einstein law of photochemical equivalence, Photosynthesis, quantum	
	yield and its determination, factors affecting quantum yield,	
	Excimer and exciplex, Quenching.	
	Applied Photochemistry:	
	Term symbols and its significance, Photochemical reactions, Photo	
	oxidation and photo reduction, Effect of light intensity on the rate of	
	photochemical reactions. Photosensitization, photochemical kinetics of:	
5	decomposition of CH ₃ CHO, formation of HCI. Photochemical reactions	2
	and its types, Photochemical formation of smog, Stern-Volmer equation	
	(derivation). Photodegradation: photocatalyst-ZnO, I_1O_2 , principle,	
	application of ZnO/11O ₂ . Actinometry-uranyloxalate and potassium	
	afficiency. Photochemistry of carbonyl compounds	
Rafara	nces:	
1	Atkins' Physical Chemistry, Peter Atkins and Julio Paula Oxford University	Press
1.	10th Ed.(2014).	· · • • • • • • • • • • • • • • • • • •
		• •

- 2. Physical Chemistry- A molecular approach, Donald Mcquarie and John Simon, Viva, 1st Ed, (2010).
- 3. Physical Chemistry, Ira N Levine, Tata Mcgraw-Hill Education; 6 Ed. (2011).
- 4. Elements of physical chemistry-Lewis and Glasstone.
- 5. Physicalchemistry-P.W.Atkins, ELBS, fourth edition (1990).
- 6. Introductiontoelectrochemistry-S.Glastone.
- 7. Modernelectrochemistry, Vol I&II, J.O.M.Bockris and A.K.N.Reddy, (1970).
- 8. Quantum Chemistry, Ira N Levine, Pearson Education, 7th Ed. (2013).

- 9. Introductory Quantum Chemistry, A. K. Chandra, Tata McGraw-Hill (1998).
- 10. Quantum Chemistry, R. K. Prasad, New Age International (2001).
- 11. Quantum Chemistry, Ira N Levine, Pearson Education, 7th Ed. (2013).
- 12. Fundamentals of Photochemistry ,K. K. Rohatgi and K. K. Mukherjee;, 3rd ed. New Age International (P) Ltd, (2014).
- 13. Modern Molecular Photochemistry of Organic Molecules ,N. J. Turro, V. Ramamurthy and J. C. Scaiano, 1st ed. University Science, Books, CA, (2010).
- 14. Photochemical Synthesis, Ninomiya, T. Naito, 1st ed. Academic Press, New York, (1989).

Date

Course Coordinator

Subject Committee Chairperson

Course Title: Spectroscopic and Thermal methods	Course code: 21CHE2C8L
Total Contact Hours: 56	Course Credits: 04
Formative Assessment Marks: 30	Duration of ESA/Exam: 3 h
Summative Assessment Marks: 70	

Course Outcomes (CO's):

- 1. To Understand the theoretical and basic aspects of symmetry and group theory related to spectroscopy
- 2. To study interaction of electromagnetic radiation with matter.
- 3. To apply spectroscopic techniques for quantitative analysis
- 4. To acquire knowledge on thermal methods of analysis

At the end of the course, students will be able to:

- 1. Apply fundamental and basic knowledge of spectroscopy in the characterization and interpretation of structure.
- 2. Able to apply the techniques in academic, industrial and research

Group Theory and Symmetry: Symmetry elements & Symmetry operations, groups, subgroups, cyclic groups, conjugate relationships, classes, molecular point groups, Hermann-Maugin symbols for point groups. Schoenflies notations, matrix representations of symmetry operation, matrix representations, of groups, Reducible and Irreducible representations, characters of representations. The great orthogonality theorem, character tables (Cs, Ci, C2, C2v, C2h and C3v) and Multiplication tables (C2v, C2h, C3v) – their construction. Mullikan symbols, molecular models. Determination of vibration modes, hybridization, molecular orbitals on the basis of group theory. Electromagnetic radiation and quantitative aspects: Characterization, quantization of energy levels, regions of electromagnetic radiation, spectrum – interaction electromagnetic radiation with matter – representation of spectra, intensity and width of spectral lines. Quantitative aspects of absorption – Beer- Lambert's law, Terminology8 associated with absorption measurements. Theory of molecular absorption.Vibration- rotation fine structure of electronic spectra. Criteria for spectrophotometric determinations with examples (Fe, Mo and Ni). Limitations of the law. UV-Visible Spectroscopy: Types of absorption bands, modes of electronic transitions, simple chromophoric – auxochrome theory. Solvent effect and choice of solvent.12	Unit	Description	Hours
 Symmetry elements & Symmetry operations, groups, subgroups, cyclic groups, conjugate relationships, classes, molecular point groups, Hermann-Maugin symbols for point groups. Schoenflies notations, matrix representations of symmetry operation, matrix representations, of groups. Reducible and Irreducible representations, characters of representations. The great orthogonality theorem, character tables (Cs, Ci, C2, C2v, C2h and C3v) and Multiplication tables (C_{2v}, C_{2h}, C_{3v})- their construction. Mullikan symbols, molecular models. Determination of vibration modes, hybridization, molecular orbitals on the basis of group theory. Electromagnetic radiation and quantitative aspects: Characterization, quantization of energy levels, regions of electromagnetic radiation, spectrum – interaction electromagnetic radiation with matter – representation of spectra, intensity and width of spectral lines. Quantitative aspects of absorption – Beer- Lambert's law, Terminology8 associated with absorption measurements. Theory of molecular absorption. Vibration- rotation fine structure of electronic spectra. Criteria for spectrophotometric determinations with examples (Fe, Mo and Ni). Limitations of the law. UV-Visible Spectroscopy: Types of absorption bands, modes of electronic transitions, simple chromophoric –auxochrome theory. Solvent effect and choice of solvent.12 Prediction of <i>A</i> may using Wood Ward and Finger rules for 		Group Theory and Symmetry:	
 groups, conjugate relationships, classes, molecular point groups, Hermann-Maugin symbols for point groups. Schoenflies notations, matrix representations of symmetry operation, matrix representations of groups. Reducible and Irreducible representations, characters of representations. The great orthogonality theorem, character tables (Cs, Ci, C2, C2v, C2h and C3v) and Multiplication tables (C_{2v}, C_{2h}, C_{3v})- their construction. Mullikan symbols, molecular models. Determination of vibration modes, hybridization, molecular orbitals on the basis of group theory. Electromagnetic radiation and quantitative aspects: Characterization, quantization of energy levels, regions of electromagnetic radiation, spectrum – interaction electromagnetic radiation with matter – representation of spectra, intensity and width of spectral lines. Quantitative aspects of absorption – Beer- Lambert's law, Terminology8 associated with absorption measurements. Theory of molecular absorption.Vibration- rotation fine structure of electronic spectra. Criteria for spectrophotometric determinations with examples (Fe, Mo and Ni). Limitations of the law. UV-Visible Spectroscopy: Types of absorption bands, modes of electronic transitions, simple chromophoric –auxochrome theory. Solvent effect and choice of solvent. 12 		Symmetry elements & Symmetry operations, groups, subgroups, cyclic	
 Maugin symbols for point groups. Schoenflies notations, matrix representations of symmetry operation, matrix representations of groups. Reducible and Irreducible representations, characters of representations. The great orthogonality theorem, character tables (Cs, Ci, C2, C2v, C2h and C3v) and Multiplication tables (C_{2v}, C_{2h}, C_{3v})- their construction. Mullikan symbols, molecular models. Determination of vibration modes, hybridization, molecular orbitals on the basis of group theory. Electromagnetic radiation and quantitative aspects: Characterization, quantization of energy levels, regions of electromagnetic radiation, spectrum – interaction electromagnetic radiation with matter – representation of spectra, intensity and width of spectral lines. Quantitative aspects of absorption – Beer- Lambert's law, Terminology8 associated with absorption measurements. Theory of molecular absorption.Vibration- rotation fine structure of electronic spectra. Criteria for spectrophotometric determinations with examples (Fe, Mo and Ni). Limitations of the law. UV-Visible Spectroscopy: Types of absorption bands, modes of electronic transitions, simple chromophoric –auxochrome theory. Solvent effect and choice of solvent.12 		groups, conjugate relationships, classes, molecular point groups, Hermann-	-
 representations of symmetry operation, matrix representations of groups Reducible and Irreducible representations, characters of representations. The great orthogonality theorem, character tables (Cs, Ci, C2, C2v, C2h and C3v) and Multiplication tables (C_{2v}, C_{2h}, C_{3v})- their construction. Mullikan symbols, molecular models. Determination of vibration modes, hybridization, molecular orbitals on the basis of group theory. Electromagnetic radiation and quantitative aspects: Characterization, quantization of energy levels, regions of electromagnetic radiation, spectrum - interaction electromagnetic radiation with matter - representation of spectra, intensity and width of spectral lines. Quantitative aspects of absorption - Beer- Lambert's law, Terminology8 associated with absorption measurements. Theory of molecular absorption.Vibration- rotation fine structure of electronic spectra. Criteria for spectrophotometric determinations with examples (Fe, Mo and Ni). Limitations of the law. UV-Visible Spectroscopy: Types of absorption bands, modes of electronic transitions, simple chromophoric -auxochrome theory. Solvent effect and choice of solvent 12 		Maugin symbols for point groups. Schoenflies notations, matrix	
 Reducible and Irreducible representations, characters of representations. The great orthogonality theorem, character tables (Cs, Ci, C2, C2v, C2h and C3v) and Multiplication tables (C_{2v}, C_{2h}, C_{3v})- their construction. Mullikan symbols, molecular models. Determination of vibration modes, hybridization, molecular orbitals on the basis of group theory. Electromagnetic radiation and quantitative aspects: Characterization, quantization of energy levels, regions of electromagnetic radiation, spectrum – interaction electromagnetic radiation with matter – representation of spectra, intensity and width of spectral lines. Quantitative aspects of absorption – Beer- Lambert's law, Terminology8 associated with absorption measurements. Theory of molecular absorption.Vibration- rotation fine structure of electronic spectra. Criteria for spectrophotometric determinations with examples (Fe, Mo and Ni). Limitations of the law. UV-Visible Spectroscopy: Types of absorption bands, modes of electronic transitions, simple chromophoric –auxochrome theory. Solvent effect and choice of solvent. 12 	1	representations of symmetry operation, matrix representations of groups.	12
 great orthogonality theorem, character tables (Cs, Ci, C2, C2v, C2h and C3v) and Multiplication tables (C_{2v}, C_{2h}, C_{3v})- their construction. Mullikan symbols, molecular models. Determination of vibration modes, hybridization, molecular orbitals on the basis of group theory. Electromagnetic radiation and quantitative aspects: Characterization, quantization of energy levels, regions of electromagnetic radiation, spectrum – interaction electromagnetic radiation with matter – representation of spectra, intensity and width of spectral lines. Quantitative aspects of absorption – Beer- Lambert's law, Terminology8 associated with absorption measurements. Theory of molecular absorption.Vibration- rotation fine structure of electronic spectra. Criteria for spectrophotometric determinations with examples (Fe, Mo and Ni). Limitations of the law. UV-Visible Spectroscopy: Types of absorption bands, modes of electronic transitions, simple chromophoric –auxochrome theory. Solvent effect and choice of solvent.12 	1	Reducible and Irreducible representations, characters of representations. The	12
 and Multiplication tables (C_{2v}, C_{2h}, C_{3v})- their construction. Mullikan symbols, molecular models. Determination of vibration modes, hybridization, molecular orbitals on the basis of group theory. Electromagnetic radiation and quantitative aspects: Characterization, quantization of energy levels, regions of electromagnetic radiation, spectrum – interaction electromagnetic radiation with matter – representation of spectra, intensity and width of spectral lines. Quantitative aspects of absorption – Beer- Lambert's law, Terminology8 associated with absorption measurements. Theory of molecular absorption.Vibration- rotation fine structure of electronic spectra. Criteria for spectrophotometric determinations with examples (Fe, Mo and Ni). Limitations of the law. UV-Visible Spectroscopy: Types of absorption bands, modes of electronic transitions, simple chromophoric –auxochrome theory. Solvent effect and choice of solvent.12 		great orthogonality theorem, character tables (Cs, Ci, C2, C2v, C2h and C3v)	
 symbols, molecular models. Determination of vibration modes, hybridization, molecular orbitals on the basis of group theory. Electromagnetic radiation and quantitative aspects: Characterization, quantization of energy levels, regions of electromagnetic radiation, spectrum – interaction electromagnetic radiation with matter – representation of spectra, intensity and width of spectral lines. Quantitative aspects of absorption – Beer- Lambert's law, Terminology8 associated with absorption measurements. Theory of molecular absorption.Vibration- rotation fine structure of electronic spectra. Criteria for spectrophotometric determinations with examples (Fe, Mo and Ni). Limitations of the law. UV-Visible Spectroscopy: Types of absorption bands, modes of electronic transitions, simple chromophoric –auxochrome theory. Solvent effect and choice of solvent.12 		and Multiplication tables (C2v, C2h, C3v)- their construction. Mullikar	l l
 molecular orbitals on the basis of group theory. Electromagnetic radiation and quantitative aspects: Characterization, quantization of energy levels, regions of electromagnetic radiation, spectrum – interaction electromagnetic radiation with matter – representation of spectra, intensity and width of spectral lines. Quantitative aspects of absorption – Beer- Lambert's law, Terminology8 associated with absorption measurements. Theory of molecular absorption.Vibration- rotation fine structure of electronic spectra. Criteria for spectrophotometric determinations with examples (Fe, Mo and Ni). Limitations of the law. UV-Visible Spectroscopy: Types of absorption bands, modes of electronic transitions, simple chromophoric –auxochrome theory. Solvent effect and choice of solvent, 12 Bradiation of a max value by using Wood Ward and Figure rules for 		symbols, molecular models. Determination of vibration modes, hybridization,	
 Electromagnetic radiation and quantitative aspects: Characterization, quantization of energy levels, regions of electromagnetic radiation, spectrum – interaction electromagnetic radiation with matter – representation of spectra, intensity and width of spectral lines. Quantitative aspects of absorption – Beer- Lambert's law, Terminology8 associated with absorption measurements. Theory of molecular absorption.Vibration- rotation fine structure of electronic spectra. Criteria for spectrophotometric determinations with examples (Fe, Mo and Ni). Limitations of the law. UV-Visible Spectroscopy: Types of absorption bands, modes of electronic transitions, simple chromophoric –auxochrome theory. Solvent effect and choice of solvent.12 		molecular orbitals on the basis of group theory.	
 Characterization, quantization of energy levels, regions of electromagnetic radiation, spectrum – interaction electromagnetic radiation with matter – representation of spectra, intensity and width of spectral lines. Quantitative aspects of absorption – Beer- Lambert's law, Terminology8 associated with absorption measurements. Theory of molecular absorption.Vibration- rotation fine structure of electronic spectra. Criteria for spectrophotometric determinations with examples (Fe, Mo and Ni). Limitations of the law. UV-Visible Spectroscopy: Types of absorption bands, modes of electronic transitions, simple chromophoric –auxochrome theory. Solvent effect and choice of solvent.12 		Electromagnetic radiation and quantitative aspects:	
 radiation, spectrum – interaction electromagnetic radiation with matter – representation of spectra, intensity and width of spectral lines. Quantitative aspects of absorption – Beer- Lambert's law, Terminology8 associated with absorption measurements. Theory of molecular absorption.Vibration- rotation fine structure of electronic spectra. Criteria for spectrophotometric determinations with examples (Fe, Mo and Ni). Limitations of the law. UV-Visible Spectroscopy: Types of absorption bands, modes of electronic transitions, simple chromophoric –auxochrome theory. Solvent effect and choice of solvent.12 		Characterization, quantization of energy levels, regions of electromagnetic	
 representation of spectra, intensity and width of spectral lines. Quantitative aspects of absorption – Beer- Lambert's law, Terminology8 associated with absorption measurements. Theory of molecular absorption.Vibration- rotation fine structure of electronic spectra. Criteria for spectrophotometric determinations with examples (Fe, Mo and Ni). Limitations of the law. UV-Visible Spectroscopy: Types of absorption bands, modes of electronic transitions, simple chromophoric –auxochrome theory. Solvent effect and choice of solvent.12 		radiation, spectrum - interaction electromagnetic radiation with matter -	-
 Quantitative aspects of absorption – Beer- Lambert's law, Terminology8 associated with absorption measurements. Theory of molecular absorption.Vibration- rotation fine structure of electronic spectra. Criteria for spectrophotometric determinations with examples (Fe, Mo and Ni). Limitations of the law. UV-Visible Spectroscopy: Types of absorption bands, modes of electronic transitions, simple chromophoric –auxochrome theory. Solvent effect and choice of solvent.12 Pradiation of a max value by using Wood Ward and Figure rules for 		representation of spectra, intensity and width of spectral lines.	
 associated with absorption measurements. Theory of molecular absorption.Vibration- rotation fine structure of electronic spectra. Criteria for spectrophotometric determinations with examples (Fe, Mo and Ni). Limitations of the law. UV-Visible Spectroscopy: Types of absorption bands, modes of electronic transitions, simple chromophoric –auxochrome theory. Solvent effect and choice of solvent.12 Bradiation of \u03c0 max, value by using Wood Ward and Figure rules for 	2	Quantitative aspects of absorption - Beer- Lambert's law, Terminology	8
 absorption.Vibration- rotation fine structure of electronic spectra. Criteria for spectrophotometric determinations with examples (Fe, Mo and Ni). Limitations of the law. UV-Visible Spectroscopy: Types of absorption bands, modes of electronic transitions, simple chromophoric –auxochrome theory. Solvent effect and choice of solvent.12 Bradiation of a max value by using Wood Word and Figure rules for 		associated with absorption measurements. Theory of molecular	1
 spectrophotometric determinations with examples (Fe, Mo and Ni). Limitations of the law. UV-Visible Spectroscopy: Types of absorption bands, modes of electronic transitions, simple chromophoric –auxochrome theory. Solvent effect and choice of solvent.12 Pradiction of a max value by using Wood Word and Figure rules for 		absorption. Vibration- rotation fine structure of electronic spectra. Criteria for	
Limitations of the law. UV-Visible Spectroscopy: Types of absorption bands, modes of electronic transitions, simple chromophoric –auxochrome theory. Solvent effect and choice of solvent.12 Prediction of λ may value by using Wood Word and Figure rules for		spectrophotometric determinations with examples (Fe, Mo and Ni).	
UV-Visible Spectroscopy:Types of absorption bands, modes of electronic transitions, simplechromophoric –auxochrome theory. Solvent effect and choice of solvent.12Pradiction of a max value by using Wood Word and Figser rules for		Limitations of the law.	
Types of absorption bands, modes of electronic transitions, simple chromophoric –auxochrome theory. Solvent effect and choice of solvent.12 Prediction of a max value by using Wood Word and Fieser rules for		UV-Visible Spectroscopy:	
3 chromophoric –auxochrome theory. Solvent effect and choice of solvent. 12 Prediction of a max value by using Wood Word and Figser rules for		Types of absorption bands, modes of electronic transitions, simple	
Pradiction of a may value by using Wood Word and Figsor rules for	3	chromophoric -auxochrome theory. Solvent effect and choice of solvent	.12
Frediction of X-max value by using wood-ward and freser fules for		Prediction of λ -max value by using Wood-Ward and Fieser rules for	•
conjugated diens, trienes and cyclic α , β unsaturated aldehydes and ketones,		conjugated diens, trienes and cyclic α , β unsaturated aldehydes and ketones,	

	benzene and substituted benzene rings. Instrumentation (single beam and	
	double beam spectrophotometers). Quantitative and Qualitative applications	
	of UV-Visible spectroscopy in structural and molecular weight determination,	
	Determination of stoichiometry and stability of the complexes, Analysis of	
	binary mixtures(Cr and Mn), measurements of dissociation constants of acids	
	and bases. Photometric titrations and kinetic studies. Method of colour	
	measurement for of NH ₃ , Cr, Cu, Fe, Mn.	
	Inorganic spectral Methods:	
	Flame Photometry and Atomic Absorption Spectrometry:	
	Principles and Theory - Instrumentation - Flames - Burners - Nonflame	
	Techniques - Spectral and Chemical Interferences - Experimental Aspects.	
	Total consumption and premix burners, role of temperature on absorption,	
	emission and fluorescence. Comparative study of the basic components	
	and difference in the instrumental design for atomic absorption and flame	
	photometry. Analytical applications of AAS- determination of mercury.	
4	Atomic Emission Spectrometry and Inductively Coupled Plasma:	10
4	Principles and Instrumentation - Excitation source, Limitations of AES,	12
	interferences. Effect of organic solvents. Principles of Plasma Spectroscopy	
	- Excitation Source in ICP - Applications.	
	Nepnelometry and Turbidometry:	
	Applications Light contraring in nonholometry and turbidimetry Choice	
	hotseen nonholometry and turbidimetry tubidimetry and colorimetry	
	nephelometry and fluoromtry. Theory effects of concentration particle	
	size and wavelength on scattering Applications: Determination of SO4	
	Turbidimetric titrations	
	Thermal Methods of Analysis	
	Thermo Gravimetric Analysis	
	Introduction, thermogravimetric analysis(TGA) – types of thermo gravimetric	
	analysis, principles, Automatic thermogravimetric analysis, instrumentation.	
	types of recording thermobalances, sample holders, factors affecting the	
	results – heating rate, furnace instrument control/data handling. Applications-	
	purity and thermal stability, evaluation of correct drying temperature, analysis	
	of complex mixture and determination of kinetic parameters of thermal	
	degradation.	
F	Differential Thermal Analysis (DTA):	10
5	Theory, variables affecting the DTA, general principles, instrumentation,	12
	applications – analysis of the physical mixtures and thermal behavior study,	
	determination of decomposition point. Simultaneous DTA-TGA curves,	
	factors affecting results, and applications.	
	Differential Scanning Calorimetry (DSC):	
	Basic principle, differences between DTA and DSC, instrumentation – power	
	compensated DSC, heat flux DSC, applications - studies of thermal	
	transistors and isothermal crystallization, pharmaceutical industry for testing	
	the purity of the samples.	
	Thermometric titrimetry (Acid-Base, precipitation, Complexation, redox	

	and non- aqueous titrations) and direct injection enthalpimetry-principle, instrumentation, applications.
Refere	ences:
1.	Atomic and Molecular Spectroscopy: Basic Concepts and Applications, Rita Kakkar, Cambridge University Press, (2015).
2.	Fundamental of Analytical Chemistry, D.A. Skoog, D.M. West, Holler and Crouch, 8 th edition, Saunders College Publishing, New York, (2005).
3.	Analytical Chemistry, G.D. Christian, 5th ed, John Wiley & Sons, Inc, India (2001).
4.	Quantitative Analysis, R.A. Day and A.L. Underwood, 6th edition, prentice Hall, Inc. New Delhi, (1993).
5.	Vogel's Textbook of Quantitative Chemical Analysis, J. Mendham, R.C. Denney, J.D. Barnes and M.J.K. Thomas, 6th edition, Third Indian Reprint. Pearson Education Pvt. Ltd., New Delhi, (2003).
6.	Analytical Chemistry Principles, John H. Kennedy, 2nd edition, Saunders College Publishing, California, (1990).
7.	Principles and Practicals of Analytical Chemistry, F. W. Fifield and Kealey, 3rd edition, Blackwell Sci., Ltd. Maiden, USA, (2000).
8.	Modern Analytical Chemistry, David Harvey, McGraw Hill, New Delhi, (2000).
9.	Introduction to Instrumental Analysis, Robert. D. Braun, Pharm. Med. Prem. India, (1987).
10.	Instrumental Method of Analysis, W. M. Dean and Settle, 7 th edition, CBS Publishers, New Delhi,(1986).
11.	Instant Notes of Analytical Chemistry, Kealey and Haines, Viva books Pvt. Ltd., (2002).
12.	Basic Concepts of Analytical Chemistry, S.M.Khopkar, New Age Intrenational 3 rd edition, (2008).
13.	Chemical Applications of Group Theory, F. A. Cotton, John Willey & Sons, 3rd Ed. (2008).
14.	Symmetry and Spectroscopy of Molecules, K. Veerareddy, Revised II Ed., New age international, 2020.

Date

Course Coordinator

Subject Committee Chairperson

SEC 2: Research Methodology

Course Title: Research Methodology	Course code: 21CHE2S2LP
Total Contact Hours: 28 (01 L-0-2P)	Course Credits: 02
Formative Assessment Marks: 20	Duration of ESA/Exam: 1h
Summative Assessment Marks: 30	

Course Outcomes (COs):

- 1. To Understand the importance and requirement of research
- 2. To do literature survey and data collection

At the end of the course, students will be able to:

- 1. Capable to cultivate research knowledge skills
- 2. Apply the knowledge and data collection methods in experiments and research work

SEC 2: Research Methodology

Unit	Description	Hours
1	Introduction to Research Nature and importance of research- Aims, Objectives and Principles: Fundamental research vs. applied research with examples: Qualitative vs Quantitative research: Theoretical research vs. experimental research with examples: Selection of a research problem and Sources of literature – Journals, Conferences, Books. Types of sources: Literature Survey engines- Scopus, web of Science, Google Scholar, PubMed, NCBI, Scihub, etc. Science citation index: Citations, h-index, i10 index, impact factor.	8
2	Methods of Data Collection Data Collection Methods- Framing a hypothesis, designing controlled experiments, choosing the sample-size, sampling bias, importance of independent replicates, conducting an experiment, maintaining a lab- notebook to record observations: Identifying experimental errors. Case- studies on well-designed experiments vs. poorly designed experiments. Correlations vs. Causation .Good laboratory Practices. Safety practices in laboratories; Introduction to Chemdraw, Chemsketch and other basic softwares.	8
3	Data analysis (Practical)Data Presentation and Writing: Technical presentation, technicalwriting, Formatting citations ; MS Excel for plotting the data (pie chart,plots, bar charts)Analysis using software tools:Descriptive Statistics: Mean, standard deviation, variance, plotting data and	12
understanding error-bars. Curve Fitting: Correlation and Regression. Distributions: Normal Distribution, Gaussian distribution, skewed distributions. Inferential Statistics: Hypothesis testing and understanding pvalue. Parametric tests: Student's t-test, ANOVA. Tests to analyse categorical data: Chi-square test.

References (indicative)

- 1. C.R. Kothari, Research Methodology: Methods and Techniques, II Ed. New Age International Publishers, (2009).
- 2. Shanthibhushan Mishra, Shashi Alok, Handbook of Research Methodology, I Ed, 2017, Educreation Publishers.
- 3. Basic Statistical Tools in Research and Data Analysis (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5037948/).
- 4. Introduction to statistical methods with MATLAB (MATLAB and Simulink Training (mathworks.com).

DSC5 P4: Preparation and analysis of Coordination compounds

Course Title: Preparation and analysis of Coordination compounds	Course code: 21CHE2C5P
Total Contact Hours: 56 (0-0-4P/week)	Course Credits: 02
Formative Assessment Marks: 20	Duration of ESA/Exam: 4 h
Summative Assessment Marks: 30	

Course Outcomes (CO's):

- 1. To provide practical training on preparation of different types of metal complexes.
- 2. To determine the concentration of metal ion in the solutions in different types of reactions.

At the end of the course, students will be able to:

- 1. Able to estimate the amount of metal ion in given solutions
- 2. Gain hands on experience and knowledge about the synthesis of various metal complexes of different shapes.
- 3. Able to gain knowledge on hybridization and structures of complexes.

SL No	List of experiments	Hours
1	Preparation of Mercury tetrathiocyanatocobaltate(III) and analysis of cobalt.	
2	Preparation og Chloropentammine cobalt (III) chloride and analysis of Cobalt and chloride	
3	Preparation of Nickel (II) salicylaldoxime and analysis of nickel.	
4	Preparation of Copper (II) acetyl acetone and analysis of copper.	
5	Preparation of Tris thiourea copper (I) sulphate complex and analysis of copper.	-
6	Preparation of Hexammine cobalt (III) chloride and analysis of cobalt.	
7	Preparation of Potassium bisoxalato cuprate (II) dehydrate and analysis of copper.	
8	Preparation of Potassium trisoxalatoferrate (III) and analysis of iron.	
9	Preparation of Nickel (II) Schiff's base complex and analysis of nickel	

References:

- 1. Vogel's Qualitative analysis, G Svehla and Sivasankar, Pearson press, 7th Ed 2012
- 2. Quantitative chemical analysis Daniel, C.Harris, 7th edition (2006).
- 3. Vogel's Textbook of Quantitative Chemical analysis, Mendham, Denney, Barnes, Thomas, Sivasankar, 6th Ed, Pearson publishers, 2009
- 4. A text book of quantitative inorganic analysis- A.I.Vogel, 3rd edition, 1966.
- Vogel's text book of quantitative chemical analysis J.Basset, R.C.Denney, G. H. Jeffere and J. Mendhom, 5th edition, 1989.
- 6. Vogel's Qualitative Inorganic Analysis, revised, G. Svehla, Longman, 7th Ed, 1996.
- 7. Practical Inorganic Chemistry, Marr and Rocket, 1972.

DSC6 P5: Synthesis of organic compounds

Course Title: Synthesis of organic compounds	Course code: 21CHE1C6P					
Total Contact Hours: 56 (0-0-4P/week)	Course Credits: 02					
Formative Assessment Marks: 20	Duration of ESA/Exam: 4 h					
Summative Assessment Marks: 30						

Course Outcomes (CO's):

- 1. Train and expose to simple synthetic procedures in the laboratory.
- 2. To introduce different experiments to develop the skills and strategic approaches for organic Synthesis.
- 3. To determine physical constants and purification of synthesized organic compounds by Recrystallization techniques.
- 4. To demonstrate synthesis and TLC to monitor a reaction.

- 1. Students learn various synthetic methodologies and able to detect the functional group by preparation of a suitable derivative.
- 2. Developed skills provide confidence of handling simple laboratory synthetic experiments in research and industries.
- 3. Develop hands on expertise to design and conduct the experiments independently

SL No	List of experiments	Hours
1	To determine corrected melting points of an unknown organic compound (calibration of thermometer).	
2	Preparation of Adipic acid from cyclohexanol (oxidation).	
3	Reimer Tiemann reaction (preparation of Salicylaldehyde β -hydroxynaphthaldehyde)	
4	Preparation of acetanilide from Acetophenone.(Beckmann Rearrangement)	
5	Preparation of 7-hydroxy-4-methyl coumarin(Pechmann reaction) from resorcinol	
6	Preparation of benzyl alcohol and benzoic acid (Cannizzaro's reaction).	
7	N- Bromo succinimide (Bromination).	
8	Dibenzal acetone from benzaldehyde (Claisen-Schmidt reaction).	
9	Cinnamic acid from benzaldehyde (Knoevenaegal reaction).	
10	Preparation of Acetanilide, bromoacetanilide, bromoaniline.	
11	Diphenylmethane from benzylchloride (FriedelCraft's reaction).	
12	Preparation of Benzanilide (Schotten-Baumann reaction).	
13	O-Benzoylbenzoic acid (Friedel Craft's reaction).	
14	Preparation of indigo from Anthranilic acid.	

References:

- 1. Macroscale and Microscale Organic Experiments, K. L. Williamson, D. C. Heath, 7th Ed., 2011.
- **2.** Comprehensive practical organic chemistry preparation and quantitative analysis-Ahluwalia.V.K.and Renu Agarwal, University Press, Hyderabad (LCS edition 2000).
- **3.** Comprehensive practical organic chemistry-quantitative analysis-V.K.Ahluwalia and university press-Hyderabad.
- **4.** Advanced practical organic chemistry N.K.Vishnu, second revised edition, Vikas Publication (2000).
- 5. Advanced practical organic chemistry D.P.Agarwal, Goel Publishing house, Meerut (U.P).
- 6. Quantitative & qualitative organic analysis, A.I.Vogel (CBS Publishers, New Delhi-2002).

DSC7 P6: Electro, photochemistry and Catalysis Practicals

Course Title: Electro, photochemistry and Catalysis Practicals	Course code: 21CHE1C7P
Total Contact Hours: 56 (0-0-4P/week)	Course Credits: 02
Formative Assessment Marks: 20	Duration of ESA/Exam: 4 h
Summative Assessment Marks: 30	

Course Outcomes (CO's):

- 1. To gain hands-on expertise in the study of electrochemical techniques like potentiometry.
- 2. To obtain skills and conduct the spectroscopic experiments

- 1. Capable to correlate the theoretical approach with practical aspects.
- 2. Acquire expertise in instrumental techniques for industrial and research career.

SL No	List of experiments	Hours
1	Potentiometric titration of KI vs KMnO ₄ solution.	
2	Potentiometric titration of Fe(II) vs Ce(IV).	
3	To obtain the absorption spectra of colored complexes, verification of Beer's law	
4	Spectrophotometric titration of FeS ₀₄ against KMn ₀₄ .	
5	Adsorption of acetic acid on charcoal	
6	Adsorption of Oxalic acid on activated charcoal	
7	Potentiometric determination of available chlorine in bleaching powder.	
8	Determination of dissociation constant of weak acid by conductance method	
9	Conductometric determination of equivalent weight and K _a for a weak acid.	
10	Estimation of metal ions in solution using spectrophotometer. (Fe, Ni, etc)	
Refere	nces:	
	1. Experimental Physical Chemistry- Athavale V.D, New Gae International Publishers, 2001.	
	 Experiments in Physical Chemistry- Carl W Garland; Joseph W Nibler; Shoemaker, Mcgraw Hill, 8th Ed, 2009 	David P
	3 Findlay's Practical Physical ChemistryB P Levitt Longman Green and C	0.9^{th} Ed

- Findlay's Practical Physical ChemistryB P Levitt, Longman, Green and Co,9th Ed, 1973.
- 4. Experimental Physical Chemistry-F.Daniel et el., 7th Ed, Mcgraw hill, 1970
- 5. Selected Experiments in Physical Chemistry- Latham, 1964.
- 6. Advanced Practical Physical Chemistry- Yadav, Krishna Prakashan Media, 2015.

CBCS Question Paper Pattern for PG Semester End Examination with Effect from the AY 2021-22

Disciplines Specific Core (DSC) and Discipline Specific Elective (DSE)

Paper Code: Paper Title: Time: 3 Hours Max. Marks: 70 Note: Answer any FIVE of the following questions with Question No. 1 (Q1)Compulsory, each question carries equal marks.

Q1.	14 Marks
Q2.	14 Marks
Q3.	14 Marks
Q4.	14 Marks
Q5.	14 Marks

Note: Question No.1 to 5, one question from each unit i.e. (Unit I, Unit II,). The Questions may be a whole or it may consists of sub questions such as a,b, c etc...

Q6. Note : Question No.6, shall be from Unit II and III, the Question may be a whole or it may consists of sub questions such as a,b, c etc...

Q7. 14 Marks Note: Question No.7, shall be from Unit IV and V, the Question may be a whole or it may consists of sub questions such as a,b, c etc...

Q8. 14 Marks Note: Question No-8 shall be from Unit II, Unit III, Unit IV and Unit V.

The question shall have the following sub questions and weightage. i.e a - 05 marks, b - 05marks, c – 04 marks.

14 Marks

Skill Enhancement Courses (SECs)

Paper	C	ode:
Time:	1	Hours

Paper Title:

Max. Marks: 30

There shall be Theory examination of Multiple Choice Based Questions [MCQs] with Question Paper set of A, B, C and D Series at the end of each semester for SECs for the duration of One hour (First Fifteen Minutes for the Preparation of OMR and remaining Forty-Five Minutes for Answering thirty Questions). The Answer Paper is of OMR (Optical Mark Reader) Sheet.

Question Paper Pattern for Subjects with Tutorial

For the subjects with Tutorial component, there is no Semester-End Examination (SEE) to the component C3. The liberty of assessment of C3 is with the concerned faculty. The faculty must present innovative method of evaluation of component C3 before the respective BoS for approval and the same must be submitted to the Registrar and Registrar(Evaluation) before the commencement of the academic year.

VIJAYANAGARA SRI KRISHNADEVARAYA UNIVERSITY JNANASAGARA CAMPUS, BALLARI-583105

Department of Studies in Chemistry

SYLLABUS

Master of Science (I-IV Semester)

With effect from: 2021-22

Distribution of Courses/Papers in Postgraduate Programme I to IV Semester as per Choice Based Credit System (CBCS) Proposed for PG Program in Chemistry M.Sc. III-SEMESTER

Semester		The state Denor			Marks			eachir urs/we	ng eek	Credit	Duration
No.	Category	Subject code	Title of the Paper	IA	Sem Exam	Total	L	Т	Р		of exams (Hrs)
	DSC9	21CHE3C9L	Spectroscopy	30	70	100	4	-	-	4	3
	DSC10	21CHE3C10L	Chemistry of Heterocyclic Compounds	30	70	100	4	-	-	4	3
	DSE1	21CHE3E1AL	A. Polymer Science & Technology	30	70	100	4	-	-	4	3
		21CHE3E1BL	B. Nanomaterials and Applications								
		21CHE3E1CL	C. Applied Physical Chemistry								
	DSE2	21CHE3E2AL	A. Nuclear Chemistry and Materials Science	30	70	100	4	-	-	4	3
		21CHE3E2BL	B. Green Chemistry								
THIRD		21CHE3E2CL	C. Industrial Inorganic Chemistry								
	GEC1	21CHE3G1AL	A. Analytical techniques	15	35	50	2	-	-	2	2
		21CHE3G1BL	B. Separation and purification								
			techniques								
		21CHE3G1CL	C. Environmental Chemistry and								
			Waste management								
	SEC3	21CHE3S3P	Semi micro Qualitative Inorganic analysis	20	30	50	-	-	4	2	4
	DSC9P7	21CHE3C9P	Instrumentation/ Physical Chemistry Practicals	20	30	50	-	-	4	2	4
	DSC10P8	21CHE3C10P	Quantitative analysis of Organic functional	20	30	50	-	-	4	2	4
			groups								
		Total Mark	as for III Semester			600				24	

M.Sc. IV-SEMESTER

Semester				Marks			Teaching hours/week				Duration of
No.	Category	Subject code	Title of the Paper	IA	Sem. Exam	Total	L	Τ	Р	Credit	exams (Hrs)
	DSC11	21CHE4C11L	Bioinorganic and Organometallic chemistry	30	70	100	4	-	-	4	3
	DSC12	21CHE4C12L	Thermodynamics	30	70	100	4	-	-	4	3
	DSE3	21CHE4E3AL	A. Modern Organic synthesis	30	70	100	4	-	-	4	3
		21CHE4E3BL	B. Natural products of Biological Importance								
		21CHE4E3CL	C. Bioorganic chemistry								
	DSE4	21CHE4E4AL	A. Advanced Chromatographic and	30	70	100	4	-	-	4	3
FOURTH			Microscopic techniques								
FOURIE		21CHE4E4BL	B. Applied Analysis								
		21CHE4E4CL	C. Environmental and Biochemical Analysis								
	GEC2	21CHE4G2AL	A. Chemistry for daily life	15	35	50	2	-	-	2	2
		21CHE4G2BL	B. Water and food quality and laws								
		21CHE4G2CL	C. Agro and Environmental Chemistry								
	DSC11P9	21CHE4C11P	Spectral interpretation of data	20	30	50	-	-	4	2	4
	Project	21CHE4C1R	Project work	30	70	100		-	8	4	4
		Total M	arks for IV Semester			600				24	

(I-IV semester)- Total Marks: 2400 and Total credits: 96

DSC – Department Specific Core, DSE – Discipline Specific Elective, SEC – Skill Enhancement Course, GEC – Generic Elective Course, IA – Internal Assessment, SEE – Semester End Examination, L – Lecture, T – Tutorial, P – Practical.

Dept Name: Chemistry

Semester-III

DSC9: Spectroscopy

Course Title: Spectroscopy	Course code: 21CHE3C9L					
Total Contact Hours: 56	Course Credits: 04					
Formative Assessment Marks: 30	Duration of ESA/Exam: 3 h					
Summative Assessment Marks: 70						

Course Outcomes (CO's):

- 1.To understand the basic spectral aspects and characteristics
- 2. To study theoretical concepts of microwave and vibrational spectroscopy and their applications.
- 3. To familiarize with advanced spectroscopic techniques for the characterization and prediction of chemical structure
- 4. To apply spectroscopic techniques for qualitative analysis

- 1. Apply the advanced knowledge of spectroscopy in the characterization and prediction of structure.
- 2. Able to apply the techniques in academic, industrial and research

Unit	Description	Hours
	Introduction: Intensity of spectral lines, Natural line width and broadening,	
	Rotational, vibrational and electronic energy levels, selection rules.	
	Microwave Spectroscopy	
	The rotation of molecules - rotation spectra of diatomic molecules - the rigid	
	diatomic molecule - rotational energy levels - selection rules - effect of isotopic	
	substitution - the rigid and non rigid rotator. Applications - Principles of	
	determination of Bond length and moment of inertia from rotational spectra. Stark	
	effect in rotation spectra and determination of dipole moments. spectrum of a non	
1	rigid rotator - polyatomic linear molecules - Moment of inertia expression for	10
1	linear tri-atomic molecules, symmetric Top molecules, techniques and	
	instrumentation	
	Vibrational Spectroscopy	
	Vibrating diatomic molecule – simple harmonic oscillator – vibrational energy	
	levels – anharmonic oscillator selection rules – fundamental vibrations, overtones	
	and hot bands – diatomic vibrator rotator, Vibration of polyatomic molecules – The	
	number of degrees of freedom of vibration. Vibration and rotation spectra of carbon	
	monoxide.interaction of rotation and vibration – Breakdown of Born – Oppenheiner	
	approximation. Problems	
	Infra Red Spectroscopy	
	Introduction – Molecular vibrations – Mode of Vibrations, calculation of	
	vibrational frequencies, instrumentation FT - IR Spectrometer. Sampling	
2	techniques, interpretation of IR spectra factors affecting group frequencies and band	10
	shapes – Physical state of samples vibrational coupling, electrical and inductive	
	effects, Hydrogen bonding and ring structures, co-relation chart, important regions	
	in the IR spectrum – H stretching, triple bond, double band stretching, finger print	
	region, applications of IR spectroscopy in the structural elucidation of organic.	

	Compounds, application of far IR spectroscopy - Limitations of IR spectroscopy.	
	(Problems & Exercise). IR spectra of coordination modes of ligands like nitrate,	
	thiocynate, sulphate, carbonate(bridging, bidentate etc.,), and water.	
	HNMR Spectroscopy	
	Introduction – Nuclear spin and magnetic moment, origin of NMR spectra. Theory	
	of NMR spectroscopy resonance flipping instrumentation and sampling inter	
	propagation of NMP spectrum equivalent and non equivalent protons, chemical	
	preparation of Nivik spectrum, equivalent and non-equivalent protons, chemican	
	shifts(down field and up field), factors influencing chemical shifts, anisotropic	
	effects, NMR scale, units, internal references, simple and complex splitting /	
	coupling, coupling constant, correlation chart of chemical shifts, spin-spin	
	relaxations, equivalence of protons-chemical and magnetic equivalence, spin-	
3	systems. solvent effects and Nulear Overhauser Effect. Karplus relationships	12
	(Karplus curve-variation of coupling constant with dihedral angle), double	
	resonance techniques, first order and second order patterns, lanthanide shift	
	reagents, exchange phenomena High resolution 1H NMR. FT NMR and its	
	advantages. Applications of NMR spectroscopy in structure elucidation of simple	
	organic and inorganic molecules. Pulse techniques in NMR, two dimensional and	
	solid state NMR Use of NMR in Medical diagnostics Deuterium exchange	
	techniques limitations of H NMR spectroscopy	
	techniques initiations of it town spectroscopy.	
	Introduction and applications of 12C NMD superturgeony. Dured hand and off	
	introduction and applications of 15C NWR spectroscopy, Broad band and on	
	resonance coupling methods of detection. 13C Chemical shifts of different classes	
	of organic compounds-alkanes, alkyl halides, alkenes, alcohols, ethers, carbonyl	
	compounds and aromatic compounds. 2 DNMR spectroscopy, use of PMR	
	spectrum in structural elucidation of organic compound. ³¹ P and ¹⁵ F NMR. COSY,	
	NOESY (Nulear Overhauser Effect) and EXSY (Exchange Spectroscopy), MRI.	
	Conformational analysis, keto-enol tautomerism, Hbonding. Spectra of simple	
	organic molecules, phosphates, polyphosphates, PH ₃ , phosphor halides, fluoro	
4	acetic acid, SF_4 , P_4S_4 , HPF_2 .	12
	Raman Spectroscopy:	
	Raman and Rayleigh scattering, Stokes and anti-Stokes lines, polarization of	
	Raman lines, depolarization factor, polarizability ellipsoid. Classical theory of	
	Raman Effect – rotational Raman spectra – Linear – Vibrational Raman Spectra,	
	rule of mutual exclusion principle.Instrumentation. Resonance Raman	
	Spectroscopy: Resonance Raman Effect and its applications. Non-linear Raman	
	effects: Hyper, stimulated and inverse Raman effects. Coherent Anti-Stokes	
	Raman Scattering and its applications.	
	X-Ray Diffraction:	
	Production of X-Rays Measurement of X-Rays Principles of X-Ray absorption	
	Principles and instrumentation in X-Ray fluorescence X-Ray diffraction -	
	Bragg's laws - Miller indices laws - transmission and reflection method - Debye	
	Scherrer method Experimental methods nowder and retating awatal methods	
5	indeving of powder and retating emetal shots are by Single emetal and	12
3	indexing of powder and rotating crystal photographs. Single crystal and	12
	polycrystalline diffraction studies. Atomic scattering factor, structure factor,	
	Fourier synthesis, electron density diagrams and phase problems. Refinements	
	of Fourier procedures. Neutron diffraction: Neutron diffraction and differences	
	from X-ray diffraction. Electron diffraction: Theoretical principles, structure	
	analysis: Visual comparison of intensities, radial distribution function and its	

refinements.

Electron diffraction of gases, experimental technique, Scattering-Intensity curves, Wierl equation (no derivation), Radial distribution method determination of bond lengths and bond angles. Electron microprobe – principles and instruments – principles of electron diffraction - working of SEM and TEM. Photoelectron Spectroscopy: Basic principles-photoelectric effect, ionization-process, Koopman's theorem-

photoelectric spectrum of simple molecules, ESCA-chemical information from ESCA.

References:

- Fundamental of Analytical Chemistry, D.A. Skoog, D.M. West, Holler and Crouch, 8th edition, Saunders College Publishing, New York, (2005).
- 2. Analytical Chemistry, G.D. Christian, 5th ed, John Wiley & Sons, Inc, India (2001).
- **3.** Quantitative Analysis, R.A. Day and A.L. Underwood, 6th edition, prentice Hall, Inc. New Delhi, (1993).
- 4. Physical Methods in Inorganic chemistry, R.S. Drago, East-West Press, 2012
- 5. Structural Methods in Inorganic chemistry, EAV Ebsworth, David W H Rankin, Stephen Cradock, Blackwell scientific publications, 1987.
- **6.** An introduction to Magnetic Resonance spectroscopy, D.N. Sathyanarayana, I.K. International, 2013.
- 7. Vibrational Spectroscopy- Theory and Applications, D.N. Sathyanarayana, 3rd Ed., New Age Publications, 2021.
- 8. Symmetry and Spectroscopy of Molecules, K. Veerareddy, New age international, 2020.
- 9. Molecular Structure and Spectroscopy, G. Aruldhas, 2nd Edition, Prentice Hall, India, 2007.
- 10. Fundamentals of Molecular Spectroscopy, C.N. Barnwell, Tata McGraw Hill, 1983.
- 11. Introduction to Molecular Spectroscopy, G.M. Barrow, 4th Edition, McGraw Hill, 2018.
- Spectroscopy of Organic compounds P.S. Kalsi, New Age International Publications, New Delhi (6th Edn.), 2007.
- 13. Organic Spectroscopy William Kemp 3rd Edn. ELBS, 1991
- 14. Application of absorption spectroscopy of organic compound John R Dyer, Prentice Horll India, EEE, Recent Edn, 1978
- **15.** Instrumental Methods of Chemical analysis G.R. Chatwal and S.K. Anand, Himalaya Publication House, Delhi (Recent Edn.), 2011
- Instrumental methods of chemical analysis. B.K. Sharma Goel Publishing House Meerut, 2014.
- Spectroscopic methods in organic chemistry D.H. Williams, I. Fleming 6th Edition, Tata McGraw Hill, 2007.
- Introduction to NMR Spectroscopy R.J. Abraham, J. Fisher, P. Loftus, Wiley Publications, 1988.

Date

Course Coordinator

DSC10: Chemistry of Heterocyclic Compounds

Course Title: Chemistry of Heterocyclic Compounds	Course code: 21CHE3C10L
Total Contact Hours: 56	Course Credits: 04
Formative Assessment Marks: 30	Duration of ESA/Exam: 3 h
Summative Assessment Marks: 70	

Course Outcomes (CO's):

- 1. To understand the heterocyclic compounds and natural compounds which comprise the major part of organic compounds.
- 2. To gain the useful knowledge on various reaction mechanism and structural activity of organic compounds.
- 3. To acquire advance knowledge on synthesis and their pharmaceutical approach.
- 4. To study the various useful organic natural products and their synthesis.
- 5. To acquaint with plant based organic compounds.

- 1. Get familiarize with heterocyclic compounds, natural products and pant pigments.
- 2. Able to apply heterocyclic compounds in pharmaceuticals.
- 3. Interpret the concept of reaction mechanism in the transformation from reactant to product.
- 4. Interpret the mechanistic and stereochemical aspects of heterocyclic and biomolecules.

Unit	Description	Hours
	Basics of Heterocycles and their synthesis:	
	IUPAC nomenclature of heterocyclic ring systems (3-7 membered rings and simple	
	fused systems) comparative aromaticity of pyrrole, furan, thiophene, pyridine.	
Ι	Methods of synthesis:	11
	Electrophilic and nucleophilic substitutions reactions of pyrrole, furan, thiophene,	
	and pyridine ring systems. Comparison of basicity of pyridine, piperidine, and	
	pyrrole.	
	Meso-ionic and fused Heterocycles: Synthesis and pharmaceutical approach	
	Meso-ionic Heterocycles:	
	General classification chemistry of some important meso-ionic heterocycles of type-	
	A and B and their applications.	
	Fused Heterocycles:	
	Fused Heterocycles of 6 & 5 membered rings-synthesis and reactions of indole,	
	benzofuran, quinoline, isoquinoline with special references to Fischer indole	
	synthesis, and Skraup synthesis, Bischler-Napier Laski synthesis, mechanism of	
II	electrophilic substitution reaction of indole, quinoline, and benzofuran.	14
	Synthesis of pharmaceutical compounds having a heterocyclic ring with one or	
	more heteroatom:	
	Antibiotics: Pencillin-G, Pencillin-V, Cyclosporine, Cephalosporin–C, Cephalexin,	
	Tetracycline.	
	Depressants: Benzodiazepine, Midazolam, Diazepam,	
	Antidepressants: Fluoxetine, Escitalopram, Antacids/Proton Pump	
	Inhibitors: Omeprazole, Pentoperazole.	
	Antihypertensive: Nifedipine, Losartan, Metoprolol	
ш	Natural products:	10
	Alkaloids: Classifications occurrence, general methods of structural elucidation,	-

		stereo Chemistry, and synthesis of quinine, papaverine, morphine, LSD.			
	Terpenoids: Occurrence general methods of structural elucidation, stered				
		Chemistry, and synthesis of following representative molecules-citral,citronellol,			
		camphor, and santonin.			
		Steroids: Cholesterol, ergosterol structure, Vit-D ₃ and synthesis.			
		Porphyrins : Structure and synthesis of Haemoglobin and chlorophyll.			
		Bio-organic molecules:			
		Carbohydrates:			
		Determination of ring structures of monosaccharides and disaccharides with			
		reference to glucose, fructose, and maltose.			
		Proteins:			
		Amino acids, peptides, peptide synthesis using blocking reagents, modern methods			
1	N	of peptide synthesis.	10		
		Structure of proteins:	10		
		Primary, secondary and tertiary structure, sequence of amino acids in proteins, end-			
		group analysis.			
		Nucleic acids:			
		Chemical and enzymatic hydrolysis of nucleic acids, purine & pyrimidine bases, the			
		double helix of DNA, base pairing via H-bonding, various types of RNA & their			
		functions.			
		Plant pigments, Flavonoids and Prostaglandins			
		Plant Pigments:			
		Occurrence, nomenclature and general methods of structure determinations,			
		isolation and synthesis, Quercetin, Quercetin-3-Glucoside, Cyanidin-7-arabinoside			
	V	cyanidine, Hirsutidin.	10		
		Biosynthesis of Flavonoids:	10		
		Acetate pathway and shikimic acid pathway.			
		Prostaglandins:			
		Occurrence, nomenclature, classification, biogenesis and physiological effects,			
		Synthesis of PGE2 and PGF2.			
Ref	erei	nces:			
	1.	R.R.; Kumar, M.; Gupta, V Heterocyclic Chemistry, Vol.1-3, SpringerVerlag, 1998.			
	2.	Joule, J.A.; Mills, K.; Smith, G. F. Heterocyclic Chemistry, 3rd edition, Chapman	and Hall,		
		1998.			
	3.	Acheson, R.M. An Introduction to the Heterocyclic Compounds, John Wiley.In	nterscience		
		Publishers, Inc., 250 Fifth Ave., New York 1, N. Y., 1960			
	4.	Katrizky, A.R.; Rees, C.W. Comprehensive Heterocyclic Chemistry, Pergamon Press.	.Pergamon		
		Press, Ltd., Headington Hill Hall, Oxford OX3 OBW, England. 1984.			
	5.	Sriram, D.; Yogeeswari, P. Medicinal Chemistry 2nd Ed. Pearson.Pearson India, 2009)		
	6.	Eicher, T.; Hauptmann, S.; Thieme, The Chemistry of Heterocycles. Thieme Medical I	Pub, 1995		
	7.	Gilchrist, T.L. Heterocyclic Chemistry. 3rd edition. Longman Scientific Technical. 1992.			
	8.	Newkome, G.R.; Paudler, W.W. Contemporary Heterocyclic Chemistry, Wiley-Inte	r Science.		
		1982			
	9.	Finar, I.L. Organic Chemistry, Vol. 2, 5th edition, ELBS, 1975.			
	10.	Nogradi, M. Stereoselective Synthesis: A Practical Approach, VCH.Wiley-VCH:	2nd Edn.		
1		1994	,		
	11.	Coffey, S. Rodd's Chemistry of Carbon Compounds, Elsevier. 1966			
	12.	Hostettmann, Kurt; Gupta, M.P.; Marston, A. Chemistrv. Biological and Pharm	acological		
1		Properties of Medicinal Plants from the Americas, Harwood Academic Publishers. 20	13		
L		1	-		

Aggarwal, O.P. Chemistry of Organic Natural Products, Vol. 1 & 2. Krishna Prakashan Media (P) Ltd (1 January 2015)

Date

Course Coordinator

DSE1: A. Polymer Science and Technology

Course Title: Polymer Science and Technology	Course code:21CHE3E1AL
Total Contact Hours:56	Course Credits:04
Formative Assessment Marks: 30	Duration of ESA/Exam: 3H
Summative Assessment Marks:70	

Course Outcomes (CO's)

- 1. Understand basic concepts of polymers.
- 2. Study the properties and testing of polymers.
- 3. Impart knowledge on processing of polymers for different applications

- 1. Acquire knowledge on Polymeric techniques and also its preparation.
- 2. Acquaint with important properties of polymers.
- 3. Able to apply Applications of polymers in various fields.

Units	Description	Hours
Ι	Basic Concepts of Polymers:	11
	Monomers, Polymers, degree of polymerization. Linear, branched and network	
	polymers. Classification of polymers. Polymerization: Condensation, addition, co-	
	polymerization. Polymerization reactions with examples. Polymerization in	
	homogenous and heterogeneous systems, Polymerization Techniques. Methods of	
	polymerization, thermoforming of polymer resins, Plastics, Rubbers: classification,	
	vulcanization, synthetic rubbers, synthesis and applications of Buna-S and Butyl	
	rubbers	
II	Molecular weight of Polymers.	11
	Number, weight and viscosity average molecular weights. Polydispersity and	
	molecular weight distribution. The practical significance of molecular weight.	
	Measurement of molecular weights. End-group, viscosity, light scattering, osmotic	
	and ultracentrifugation methods. Analysis and testing of polymers-chemical analysis	
	of polymers, spectroscopic methods, X-ray diffraction study. Microscopy. Thermal	
	analysis and physical testing-tensile strength. Fatigue, impact and Tear resistance of	
	polymers. Hardness and abrasion resistance. Moulding of polymers, Solubility of	
	polymers	
III	Crystalline polymers - Crystal structures of polymers. Morphology of crystalline	11
	polymers, strain-induced morphology, crystallization and melting. Polymer structure	
	and physical properties-crystalline melting point, Tm-melting points of homogenous	
	series, effect of chain flexibility, entropy and heat of fusion. The glass transition	
	temperature, Ig-Relationship between Im and Ig, effects of molecular weight,	
	diluents, chemical structure, chain topology, branching and cross linking on Ig.	
	polymer utilization.	
IV	Testing of Polymers: Need for testing-specifications and standards, mechanical-	11
	short term (tensile, flexural, impact, tear resistance, abrasion resistance etc.,) long	
	term (creep and fatigue). Electrical-conductivity, volume resistivity, surface,	
	breakdown voltage, dielectric constant, loss factor, thermal, heat distortion	
	temperature, vicat softening point, low temperature, properties, thermal conductivity.	
		1

	Solution properties of polymers:	
	Polymer dissolution, thermodynamics of polymeric solutions, Floury-Huggins	
	theory, nature of polymer molecules in solution, their size and shape, theta solvent,	
	theta temperature, thermodynamics of mixing, solution viscosities.	
V	Polymer processing:	12
	Plastics, elastomers and fibers, compounding. Processing techniques;	
	calendaring, die casting, rotational casting, film casting, injection molding, blow	
	molding, extrusion molding, thermoforming, foaming reinforcing.	
	Properties and applications of commercial polymers:	
	Polyethylene (HDPE and LDPE), poly (vinyl chloride), polyamides, polyester,	
	phenolic resins, epoxy resins and silicon polymers. Functional polymers, electrically	
	conduction polymers, biomedical polymers: contact lens, dental polymers, artificial	
	heart, kidney skin and blood cells	
REFE	RENCES:	
1.	Text book of Polymer Science (3 rd edition) F.W. Billmayer, A Wiley-Interscience, 1984	
2.	Contemporary Polymer Chemistry (2 nd edition), H.R.Allcock and F.W.Lampe, Prent	tice Hall,
	Englewood Cliff's, New Jersy, 1981	
3.	Polymer Science, V.R.Gowariker, N.V.Viswanathan and JayadevSreedhar, 4th Edition, 1	New Age
	International (P) Limited, 2021.	
4.	Introductory Polymer Chemistry, G.S. Misra, Wiley Eastern Limited, 1993	
5.	Polymer Science and Technology of Plastics and Rubbers, Premamoy Ghosh, Tata McG 1990	braw Hill,
6.	Polymer characterization, Physical Techniques, D. Campbell and J.R. White, Chaop Hall, 1989.	oman and
7.	Principles of Polymer Science Systems, F. Rodriguez, McGraw Hill Book co., 1970.	

Date Course Coordinator

DSE1: B. Nanomaterials and Applications

Course Title: Nanomaterials and Applications	Course code:21CHE3E1BL
Total Contact Hours:56	Course Credits:04
Formative Assessment Marks: 30	Duration of ESA/Exam: 3H
Summative Assessment Marks:70	

Course Outcomes (CO's)

- 1. Understand the various concepts and properties of the Nanomaterials.
- 2. Able to synthesis and characterize Nanomaterials
- **3.** Apply Nanomaterials for various applications

- 1. Gain knowledge on Nanomaterials and methods of fabricating nanostructures.
- 2. Relate the unique properties of Nanomaterials to the reduce dimensionality of the material.
- 3. Describes the characterization tools to study properties of nanostructures.
- 4. Capitalize applications of Nanomaterials and implication of health and safety related to Nanomaterials

Units	Description	Hours
Ι	Introduction to Nanostructured materials	11
	Importance, Sources of nanomaterials, classification, Quantum wells, Quantum	
	wires, Quantum dots, Clusters and nanocrystals, Properties of Nanostructured	
	materials: Electronic, Optical, Metallic, Semiconducting and superconducting and	
	magnetic properties. Polymeric nanostructured materials, Polymer	
	nanocomposites. Alloys and oxide materials.	
II	Synthesis of Nanomaterials	11
	Nanoparticle synthesis: Sol-Gel, Hydrothermal, Combustion, Solvothermal,	
	microwave, Chemical methods. Nanowires, Carbon nanotubes and films,	
	energetic of self-assembly, directed assembly, growth on patterned substrate.	
	Biosynthesis and Green synthesis of nanomaterials, Understanding of	
	interacellular and extracellular strategies.	
III	Nanobiomaterials	11
	Introduction, differences of Nanobiomaterials and Nanomaterials, Biological	
	derived nanomaterials, surface immobilized biomolecules Bio-inspired synthesis	
	of nanomaterials, biometric and self-assembly, molecular motors and transducers,	
	self-assembled monolayers and Langmuir-Blodgett film deposition, Surface and	
	bulk properties of biomaterials.	
IV	Supramolecular Chemistry	11
	Definition, introduction, Synthesis, Characterization and applications of organic	
	supramolecules	
	Applications of Nanomaterials	
	Nanomagnets, Applications of nanomagnets in Sensor, high density data storage,	
	long wavelength detector. Carbon nanotubes and its applications, Applications of	
	nanofillers, Solvothermal. Biosensor applications, Solar energy conversation	
	applications, PV CELL: construction and working and applications.	
V	Modern Methods of Characterization Techniques	12
	Density measurements, X-ray methods: Powder X-Ray Diffraction (PXRD),	

structure determination from PXRD, Xray photoelectron spectroscopy. Electron microscopy: Principles and application of scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive analysis of X-rays (EDAX). Optical spectroscopy: Inductively coupled Plasma- mass spectroscopy (ICP-MS), ICP-AES (Atomic Emission Spectroscopy), AIP-OES (Optical Emission Spectroscopy)

References

1.Nanomaterials Chemistry by C.N.Rao, A Muller, A.K. Cheetham, Wiley VCH, 2007

- 2. Introduction to Nanoscale Science and Technology (Nanostructure Science and Technology), Massimiliano Ventra, StephaneEvoy, J. R. Heflin, 2004.
- 3. Nanostructures and Nanomaterials: Synthesis, Properties, and Applications (World Scientific Series in Nanoscience and Nanotechnology) by Guozhong Cao and Ying Wang, 2011
- 4. Understanding Nanomaterials by Malkiat S. Johal, 2011
- 5. Nanoscale materials, Luis M Liz Marzan and P.V. Kamat, Kluwer Academic Publishers, 2004
- 6. Biointeractions of Nanomaterials, Vijaykumar B. Sutariya, YashwantPathak, CRC Press, 2014
- 7. Encyclopedia of Materials Characterisation by C. Richard Brundle Charles A.Evans. Jr. Shaun Wilson, Butterworth-Heinemann, 1992.
- 8. Nanostructures and Nanomaterials, Synthesis, Properties and application by Guozhong Cao Imperial College Press, 2004.

Date	Course Coordinator	Subject Committe	e Chairperson
------	--------------------	------------------	---------------

DSE1: C. APPLIED PHYSICAL CHEMISTRY

Course Title: Applied Physical Chemistry	Course code:21CHE3E1CL
Total Contact Hours:56	Course Credits: 04
Formative Assessment Marks: 30	Duration of ESA/Exam: 3H
Summative Assessment Marks:70	

Course Outcomes (CO's)

- 1. Familiarized with Surface chemistry, Atomic structure, Thermodynamics, gases and Colloid
- 2. Correlate fundamental concepts with properties and applications
- 3. Select and apply appropriate techniques, resources and modern technology in multidisciplinary science.

- 1. Demonstrate specific understanding of major concepts in Physical Chemistry
- 2. Able to physical chemistry approach and practices in various fields

Units	Description	Hours
Ι	Surface Phenomena	11
	Adsorption, adsorption isotherms, surface area determination, Gibbs adsorption	
	equation and its verification, Surface tension, electrical phenomena at interfaces	
	including electrokinetic effects, micelles, reverse micelles, solubilization.	
	Thermodynamics of micellisation, factors affecting critical micelle concentration	
	(CMC), experimental methods of CMC determination. Application of photoelectron	
	spectroscopy, ESCA. Significance of surface phenomena in advanced technologies	
	like nanotechnology, drug formulation etc.	
II	Atomic Structure	11
	Review of hydrogen spectrum, Hydrogen like spectrum, Atomic spectra of alkali and	
	alkali like elements, Atomic spectra of helium atom, atomic spectra of alkaline and	
	alkaline earth like elements. Mosely lines, Multiple structure, Space quantization,	
	Stern-Gerlach experiment, Normal Zeeman effect, Anomalous Zeeman effect,	
	Paschen Back effect, Stark effect, Comparison between Stark and Zeeman effect.	
	Thermodynamics	11
	Third law of thermodynamics, experimental verification, Nernst heat theorem,	
	entropy changes in chemical reactions, determination of absolute entropy – limitation	
	of third law of thermodynamics	
	Discoverenties and thermodynamics. Discrete aroun transfer and ATD Dislogical	
	bioenergenes and thermodynamics, Phosphate group transfer and ATP, Biological	
IV	Theory of gases	11
11	Destulates of kinetic theory of gases P.V.T. relations for an ideal gas, non ideal	11
	behavior of gases, equation of state compressibility factor virial equation van der	
	Waal's equation excluded volume and molecular diameter relations of van der	
	Waal's constants with virial coefficients and Boyle temperature. Molecular collision	
	in gases, mean free path, collision diameter and collision number in a gas and in a	
	mixture of gases, kinetic theory of viscosity and diffusion	
V	Colloids	12
	Types of colloidal systems, properties, determination of size of colloidal particles,	
	Electrical double layer, zeta potential, Flocculation values, Hardy-Schutz rule.	
	Surfactants, critical micelle concentration.	
	Emulsions, foams and aerosols.	

	Importance of colloids, Applications of colloid and surface science in petroleum
	recovery, coating and painting, food, pharmaceutical and cosmetic industry.
Refere	nces
1)	Physical chemistry of surfaces – A. W. Adamson, 4thEd. John Wiley, 1982.
2)	. Introduction to Colloid and Surface Chemistry – D. Shaw, Butterworth Heinemann, 1992.
	(Elsevier Pub)
3)	Surface Activity: Principles, Phenomena and Applications (Polymers, Interfaces and
	Biomaterials) – K. Tsujii, 1st Ed. Academic Press, 1998
4)	Atomic structure and Atomic spectr by G.Herzberg, ACS Publications-1937
5)	Introduction to Atomic spectra by H.E.White, 1934
6)	Physical Chemistry Through Problems by Dogra & Dogra, New Age International Publisher,
	2015
7)	Chemical Thermodynamics by Rastogi & Mishra, VI th Edition, Vikash Publihser, 2018
Date	Course Coordinator Subject Committee Chairperson

DSE2: A. Nuclear Chemistry and Materials Science

Course Title: Nuclear Chemistry and Materials Science	Course code: 21CHE3E2AL
Total Contact Hours: 56	Course Credits: 04
Formative Assessment Marks: 30	Duration of ESA/Exam: 3 h
Summative Assessment Marks: 70	

Course Outcomes (CO's):

- 1. To Understand the basic and theoretical aspects of nuclear and materials and material applications of chemistry
- 2. To acquire knowledge on various nuclear reactions.
- 3. To learn the concept of solid state chemical reactions

- 1. Acquire fundamental and basic knowledge of nuclear reactions and their applications.
- 2. Able to understand the crystal structure of solids.
- 3. Able to acquire knowledge on super conductivity and its applications

Unit	Description	Hours
	Introduction:	
	The Atomic nucleus and its outer sphere, Elementary Particles, Sub nucleons -The	
	Quarks, Classification of Nuclides, Nuclear Stability, Nuclear potential, Exchange	
	force, Mass Defect and Binding Energy.	
	Nuclear models:	
т	Shell model, Liquid drop model, Fermi Gas Model, Optical Model.	11
1	Radioactivity:	11
	Radioactive elements, general characteristics of radioactive decay, interaction of α , β	
	and γ -rays with matter.	
	Units of Radioactivity and its measurements:	
	Units, scintillation counter, Ionization Counter, Proportional Counter, G. M. counter,	
	Neutron Detectors.	
	Induced Radioactivity:	
	Nuclear reactions: types of nuclear reactions, reaction cross-section - compound	
	nucleus theory - specific nuclear reactions, Transuranium elements, photonuclear	
	reactions.	
	Nuclear Fission:	
	Process of Fission, Fission fragments and their mass distributions, Charge	
	Distribution.	
п	Theory of nuclear fission:	12
	Fission energy, Neutron evaporation & Spallation, Nuclear Fusion, Thermonuclear	12
	Reactions.	
	Nuclear Reactors:	
	Classification, Critical size of a reactor, Power Reactor, Breeder reactor,	
	Reprocessing of spend fuels, Nuclear power stations in India, Applications of nuclear	
	sciences. Nuclear waste management including waste storage and disposal	
	procedures. Advantages and disadvantages of nuclear reactors.	
	Applications of Nuclear Chemistry:	

	Chemical investigation, Analytical applications, Age determinations, Radio dating,		
	Neutron Activation Analysis, Application in medical field.		
	Atomic packing in crystals:		
	Rules governing atomic packing, effect of radius ratio, Pauling's rules & its		
	application to actual structure, Polymorphism, Isomorphism & solid solutions.		
	Imperfections in atomic packing:		
	Types, Point defects, line defects & plane defects.		
п	Mechanical Properties of Crystals: Classification of properties, Properties of	11	
	engineering importance, Anisotropy in crystals, Elastic deformation, Plastic	11	
	deformation.		
	Phase Diagrams and Phase Transitions:		
	One Component, Two components, Three component Systems, Simple and Binary		
	Systems, Classification of Phase Transitions, Representation of Phase Transitions,		
	Factors Influencing Rate of Phase Transitions.		
	Electronic Properties and Band Theory:		
	Introduction:		
	Metals, Insulators and Semiconductors , Electronic Structure of Solids, Band		
n n	Theory, k-space and Brilliouin zones, Band structure of metals, insulators and	11	
1	semiconductors, Applications of semiconductors.	11	
	Magnetic Properties: Behaviour of substances in a magnetic field, Effect of		
	Temperature, Mechanism of ferro and antiferro magnetic ordering, Permanent		
	Magnets.		
	Optical properties:		
	Types of luminescence, Luminescence and Phosphorescence, Light-emitting diodes		
	(LEDs), Phosphors, Phosphor thermometry, Thermoluminescence dating,		
	applications.		
v	Lasers: Laser Types, solid state lasers- Ruby Laser and neodium lasers, construction	12	
•	and working, applications.	12	
	Organic Solid State Chemistry:		
	Electrically conducting organic solids, Organic metals, Conjugated systems, Doped		
	poly acetylene, Polyparaphenylene, Polypyrrole, Organic Charge Transfer		
	complexes and new Super conductors, applications.		
Refe	'ences:		
1) N	uclear Physics by I. Kaplan, Addison – Wiley, Reading Mass, 1963 (IBH).		
2) N	uclear Chemistry, Choppin and Rydberg, Pergaman Press. 1980		
3) N	Nuclear and Radiochemistry, G. Friedlander, J.W. Kennedy, E.S. Macias and J.M. Miller, Wiley		
lı	Interscience, NY. 1981		
4) E	Essentials of Nuclear Chemistry, H.J. Arnikar, New Age International Private Limited; Fourth		
E	dition,2011		
5) h	Introduction to Solids, Leonid V. Azaroff, Tata McGraw-Hill New Delhi Tata McGraw Hill Publish		
C	Company Ltd,1960		
6) S	Solid State Chemistry and its Applications, Anthony R West – John Whiley and SonsWiley; 2nd edition, 2022		
7) Iı	Inorganic Chemistry, C.S.G. Philips and R.J.P. Williams, Oxford Press, Oxford University Press; 1st Edition.1965		
É	The Structure and Properties of Materials, R.M. Rose, L.A. Shepard and J.Wulff, Wiley, John Wiley		
E 8) T	the Structure and Properties of Materials, R.M. Rose, L.A. Shepard and J.Wulff, Wiley, Jo ons 1980	hn Wiley &	
E 8) T S 9) I	The Structure and Properties of Materials, R.M. Rose, L.A. Shepard and J.Wulff, Wiley, Jo ons,1980 atroduction to Magneto chemistry A Farnshaw Academic Press 1968	hn Wiley &	

- 10) Advanced Inorganic Chemistry, F.A. Cotton and G. Wilkinson, Wiley; 6th edition, 1999
- 11) Callister's Material Science and Engineering, R.Balasubramanyam, Wiley and Sons, Wiley; Second edition, 2014
- **12)** New Directions in Solid State Chemistry, CNR Rao and J. Gopalkrishnan, Cambridge University Press; 2nd edition,1997.
- 13) V.J. Bortolot, Daybreak Corporation; "The Limits of TL", Michel Brent, Archaeology Magazine, Volume 54, Number 1, 2001.

Date

Course Coordinator

DSE2: B. Green Chemistry

Course Title: Green Chemistry	Course code: 21CHE3E2BL
Total Contact Hours: 56	Course Credits: 04
Formative Assessment Marks: 30	Duration of ESA/Exam: 3 h
Summative Assessment Marks: 70	

Course Outcomes (CO's):

- 1. Understand the importance of green chemistry
- 2. Incorporate the principles of green chemistry.
- 3. Acquire knowledge on renewable energy resources and reagents used for Green synthesis.

- 1. Apply fundamental and basic knowledge of green chemistry in daily life.
- 2. Able to apply the green chemistry principles in academic, industrial and research

Unit	Description	Hours
	Principles & concept of green chemistry:	
	Introduction, Concept and Principles, development of Green Chemistry, Atom economy	
	reactions, Selection of starting materials, Choice of Catalysts, Choice of Solvents,	
	Designing biodegradable products, Green reaction conditions, Green catalysis, Ionic	
T	liquids, Supercritical fluids, Fluorous phase reactions, Energy Requirements for	10
1	Synthesis, Use of Protecting Groups.	10
	Maximum Incorporation of the Reactants, Prevention or Minimization of Hazardous	
	Products, Selection of Starting Materials, Designing of Manufacturing Plants,	
	Strengthening of Analytical Techniques.	
	Heterogeneous catalysis: Advantages and disadvantages and Applications	
	Renewable resources:	
	Biomass use and biomass potentials ,Biomass utilization options and conversion	
	technologies, Renewable energy, Fossil fuels, Energy from Biomass, Solar Power,	
	Other forms of renewable energy, Fuel Cells, Alternative economics, Syngas economy,	
	hydrogen economy, Bio refinery chemicals from fatty acids, Polymer from Renewable	
п	Resources, Some other natural chemical resources.	12
11	Bioenergy systems and chains:	12
	Existing state-of-the-art systems and their performance. Impacts of biomass utilization	
	and potential contribution to sustainable development	
	Biomass gasification:Small scale gasification, Overall appraisal of the potentials and	
	challenges of smallgasifiers, Larger scale (CFB) biomass gasification, Gasification for	
	co-firing, Biomass gasification for different markets.	
	Measuring and controlling environmental performance	
	Importance of measurement, lactic acid production, safer Gasoline, introduction to life	
	cycle assessment, four stages of Life Cycle Assessment (LCA), Carbon foot printing,	
III	green process, Matrics-eco labels, Integrated Pollution and Prevention and	12
	Control(IPPC)-REACH (Registration, Evaluation, Authorization of Chemicals)	
	Emerging green technology and alternative energy sources	
	Design for Energy efficiency-Photochemical reactions, Advantages, Challenge faced by	

		photochemical process. Microwave technology on Chemistry, Microwave heating, and	
		Microwave assisted reactions.	
		Reagents in Green Chemistry:	
		Green reagents: Dimethylcarbonate, Polymer Supported Peracids, Polymer Supported	
		Chromic Acid, Polymeric Thioanisolyl Resin, Poly-N-Bromosuccinimide (PNBS)	
		Green Catalysts: Acid Catalysts, Oxidation Catalysts, Basic Catalysts, Polymer	
		Supported Catalysts,	
		Phase Transfer Catalysis in Green Synthesis: Applications of PTC in Organic	
		Synthesis, Polymer Supported Phase Transfer Catalysts, Nitriles from Alkyl or Acyl	
	IV	Halides, Alkyl FluQrides from Alkyl Halides, Generation of Dihalocarbenes,	12
		Generation of Vinylidene Carbenes	
		Microwave Induced Green Synthesis:	
		Microwave Assisted Reactions in Water: Hofmann Elimination, Hydrolysis, Oxidation	
		of Toluene, Oxidation of Alcohols,	
		Microwave Assisted Reactions in Organic Solvents: Esterification: Reaction of	
		Carboxylic Acid and Alcohol, Esterification: Reaction of Carboxylic Acids andBenzyl	
		Ethers Using LnBr ₃	
		Green Chemistry Using Bio Catalytic Reactions	
		Biocatalysis: Toxicity measures Need of Green Chemistry in day to day life. The	
		biocatalysis conversions,4 Enzymes Catalysed Hydrolytic Processes, Enantioselective	
	V	Hydrolysis of Meso Diesters, Hydrolysis of N-acylarnino Acids	10
		Major classes of enzyme reactions: Ox1-doreductases, Transferases, Hydrolases,	
		Lyases.	
		Applications: Sonochemistry and Green Chemistry, Electrochemical Synthesis,	
D	<u> </u>	Examples of Electrochemical synthesis.	
	ieren	ces: Abbuvalia M. Kidwai Naw tranda in Graan Chamistry, Naw Asa Dublications, 2004	
$\frac{1}{2}$	V. М D Т	A pastas and LC. Warner, Green Chemistry, Theory and Practice, Oxford University Press	2000
2) 3)	Mik	Anastas and J.C. Walter, Oreen Chemistry and Introductory text Royal Society of Chemistry? 2nd edit	2000.
3) 4)	РТ	Anastas and I C Warner Green Chemistry theory and Practice. Oxford University press. O	vford
,	1988	and sub and site warner, site in chemistry theory and tractice, existed emposity press, e.	Alora,
5)	P.Tundo <i>et al.</i> , Green Chemistry, Wiley–Blackwell London 2007		
6)	T.F. Graedel. Streamlined Life cycle Assessment. Prentice Hall. NewJersey 1998		
7)	V.K. Ahluwalia. Methods and Reagents of Green Chemistry: An Introduction by Green Chemistry		stry.
	www.clri.org		
8)	https	://www.unido.org/sites/default/files/2014-10/Gasification_FINAL_0.pdf	
	_		

DSE2: C. Industrial Inorganic Chemistry

Course Title: Industrial Inorganic Chemistry	Course code: 21CHE3E2CL
Total Contact Hours: 56	Course Credits: 04
Formative Assessment Marks: 30	Duration of ESA/Exam: 3 h
Summative Assessment Marks: 70	

Course Outcomes (CO's):

- 1. Understand the importance and industrial developments based on inorganic chemistry
- 2. Acquire knowledge on chemistry of agricultural, and building materials
- 3. Acquint with knowledge for local industries

- 1. Able to acquire the skills required by local industry.
- 2. Have the basic information on chemicals which are used in daily life

Unit	Description	Hours
Ι	 Introduction: Importance of the chemical industry; Primary inorganic materials; Bulk and commodities chemicals; Fine and specialty chemicals; Water and hydrogen; H₂O₂ and inorganic peroxido compounds. Production of Potable Water: Break-Point Chlorination and Ozonization, Flocculation and Sedimentation, Removal of Dissolved Inorganic Impurities, Activated Charcoal Treatment, Production of Freshwater from Seawater and Brackish Water, Production by Multistage Flash Evaporation, Production using Reverse Osmosis. 	12
II	 Nitrogen and nitrogen compounds; Ammonia, Synthetic ammonia manufacture, Ammonia synthesis catalyst, Conversion of synthesis gas to ammonia, Ammonia applications, Hydrazine, Manufacture of hydrazine, Rasching process, Urea process, Bayer process, H₂O₂ process, Applications of hydrazine. Phosphorus and its compounds; Phosphorus andinorganic phosphorouscompounds, raw materials, products, phosphoric acids, phosphoric acids, phosphoric acid salts, phosphorous, products manufacture from phosphorous. Sulfur and sulfur compounds. Sulphur from elemental deposits, sulphur from H₂S and SO₂, Sulphur from pyrites, manufacture of H₂SO₄ from SO₂, Applications of Sulfuric Acid. Halogen and halogen compounds by electrochemical fluorination. Chlorine and Sodium hydroxide manufacture-Mercury process, Diaphragm process, Membrane process for manufacture of Cl₂, Applications of Chlorine-Oxygen Compounds. Applications of iodine and iodine compounds, Applications for Bromine and Bromine Compounds. 	11
ш	 Mineral fertilizers; General Information and Economic Importance. Nitrogen-Containing fertilizers: Economic Importance, General Information, Importance of Superphosphate, Triple Superphosphate, Ammonium Phosphates, Manufacture of Thermal (Sinter, Melt)Basic Slag (Thomas) Phosphates. Phosphorus-Containing Fertilizers: Superphosphate, Triple Superphosphate, 	11

	Nitrophosphates- Economic importance of fertilizers					
	Potassium-Containing fertilizers: Occurrence of Potassium Salts Economic					
	Importance. Manufacture of Potassium Chloride. Potassium Sulfate. Potassium					
	Nitratefertilizers. Metals and their compounds: Metallic lithium and its compounds: Metallic					
	sodium sodium borates: Potassium and its compounds KOH and K.CO.					
	Alkaling earth motals and its compounds: Constal Information and Economic					
	Importance Beryllium and magnesium: Calcium strontium and harium:					
	Manganasa manganasa ampaunda and their applications					
	In dustry important argument allignment and their applications.					
	Industry Important organo-silicon compounds,					
	Organonalosilanes, Organoalkoxysilanes, Acyloxysilanes, Oximino- and					
	Aminoxy-Silanes, Amidosilanes, Silazanes, Organohydrogensilanes, Halo-					
IV	organosilanes.	12				
	Silicones: Linear and Cyclic Polyorganosiloxanes, Manufacture,					
	HydrolysisMethanolysisCyclization, Industrial Realization of Polymerization,					
	Silicone Oils, Room Temperature Vulcanizable Single Component Silicone					
	Rubbers, Hot Vulcanizable Peroxide Cross linkable Silicone Rubbers, Silicone					
	Copolymers, Block Copolymers and Graft Copolymers.					
	Inorganic solid:Zeolites and catalysts, inorganic fibers; Construction materials;					
	Enamel and ceramics					
	Carbon modifications: General Information and Economic Importance, diamond,					
	graphite, carbonization and graphitization; Glassy and foamed carbon; carbon					
	black-Manufacture-Pyrolysis in Presence of Oxygen, Pyrolysis Processes in the					
	Absence of Oxygen, Posttreatment, Graphitization of Synthetic Carbon, Acheson					
	Process, Castner Process, Pyrolytic Carbon and Pyrolytic Graphite, Glassy Carbon					
	and Foamed Carbon, Graphite Foils and Membranes,					
• •	Fillers -General Information and Economic Importance, Natural	10				
V	Fillers, Beneficiation of Natural Fillers, Synthetic Fillers, Silicas and	12				
	Silicates, Pyrogenic Silicas, Wet Chemically Manufactured Silicas and					
	Silicates,Post-treatment of Silicas,Glasses,Cristobalite,Aluminum					
	Hydroxide, Carbonates, Sulfates, applications; Metallic hard materials.					
	Inorganic pigments: General Information and Economic Importance, TiO ₂ ,					
	lithopone, ZnS, ZnO and Fe ₂ O ₃ ; Corrosion protection pigments; Luminescent and					
	magnetic pigments; Conclusions.					
Doform						
Referen						
1 Indu	strial Inorganic Chemistry by K H Buchel H-H Moretto D Werner Wiley VCH 2	nd Fd				

- 2. Inorganic Chemistry: An Industrial and Environmental Perspective by T W Swaddle, AP 1997.
- 3. Industrial Inorganic Chemistry by Mark Anthony Benvenuto, de Gruyter, 2015.
- 4. B.K. Sharma, Industrial Chemistry, Goel Publishing house, 2000.

GEC 1: A. Analytical Techniques

Course Title: Analytical Techniques	Course code: 21CHE3G1AL
Total Contact Hours: 28 (02 L)	Course Credits: 02
Formative Assessment Marks: 15	Duration of ESA/Exam: 2h
Summative Assessment Marks: 35	

Course Outcomes (COs):

- 1. Study the basics and fundamentals of analytical techniques
- 2. Acquire knowledge on spectroscopic techniques for the analysis of simple compounds

At the end of the course, students will be able to:

- 1. Capable to predict the structure of simple compounds
- 2. Helps in scientific career

Unit	Description	Hours	
	Introduction: Qualitative and quantitative analysis; Concentration terms;		
	Sampling and its Importance		
	Titrimetric analysis:		
1	Aid base titration-Principle, Indicators Applications for acidity and alkalinity, aspirin	0	
	Redox titration- Principle, Indicator, Applications for determination of Fe, Vitamin C	2	
	Precipitation titration- Principle, Indicator, Applications for determination of chloride		
	Complexometric titration: Principle, Indicator, Applications for determination of		
	hardness of water		
	Spectroscopic techniques:		
	Interaction of electromagnetic radiation with matter, Beer-Lambart's law-Limitations;		
	UV-Vis-Spectroscopy: Principle, Instrumentation and applications for determination of		
2	composition of metal to ligand; metal ions like Fe, Ti and biological samples	0	
2	FTIR spectroscopy: Principle, sample preparation, Instrumentation and applications for	2	
	determination of functional groups of hydrocarbons, alcohols, carbonyl compounds,		
	amines, etc		
	Fluorescence Spectroscopy: Principle and applications		
	NMR Spectroscopy: Principle, sample preparation, chemical shift, factors affecting		
	chemical shift, Interpretation of spectra and applications for simple molecules		
3	Mass spectroscopy:Principle, fragmentation process, factors affecting fragmentation,	10	
5	base peak and molecular ion peak, nitrogen rule, Interpretation of spectra and	10	
	applications for simple molecules.		
	Problems to predict the structure of simple molecules using all the spectroscopic data.		
Refere	nces:		
1. Fundamental of Analytical Chemistry, D.A. Skoog, D.M. West, Holler and Crouch, 8 th edition,			
	Saunders College Publishing, New York, (2005).		
2.	Analytical Chemistry, G.D. Christian, 5th ed, John Wiley & Sons, Inc, India (2001).		
3.	, Quantitative Analysis, R.A. Day and A.L. Underwood, 6th Edn, prentice Hall, Inc. New Delhi, 19		
4.	Vogel's Textbook of Quantitative Chemical Analysis, J. Mendham, R.C. Denney, J.D. Barnes and		
	M.J.K. Thomas, 6th edition, Third Indian Reprint. Pearson Education Pvt. Ltd., New Delhi, (2003)		

 Spectroscopy of Organic compounds – P.S. Kalsi, New Age International Publications, New Delhi (6th Edn.), 2007.

GEC 1: B. Separation and Purification Techniques

Course Title: Separation and Purification Techniques	Course code: 21CHE3G1BL
Total Contact Hours: 28 (02 L)	Course Credits: 02
Formative Assessment Marks: 15	Duration of ESA/Exam: 2h
Summative Assessment Marks: 35	

Course Outcomes (COs):

- 3. Study the basics principles of separation techniques
- 4. Understand the importance of separation techniques for qualitative and quantitative analysis

At the end of the course, students will be able to:

- 1. Capable to separate the simple products in a mixture
- 2. Able to adopt the skills of separation

Unit	Description	Hours	
	Distillation: Importance, Principle, methodology, distillation of high boiling solvents,		
	applications		
1	Centrifugation: Principle and advantages of refrigerator centrifugation	8	
	Electrophoresis: Principle, types of electrophoresis, mobility, Gel and capillary		
	electrophoresis and applications		
	Introduction: Importance of separation, Classification		
	Solvent extraction: Principle, Distribution law, types, methodology, application for the		
	extraction of Fe, Cu		
2	Thin layer Chromatography: Principle, methodology, RF value, application in	12	
	identification and monitoring of the reaction		
	Column chromatography: Principle, methodology, application in identification and		
	monitoring of the reaction		
	Gas chromatography: Mobile phase, stationary phase, Principle, Components and		
3	instrumentation, applications in the analysis of volatile compounds, Assay	8	
	High Performance liquid chromatography: Principle, Components and instrumentation,	0	
	applications in the analysis of volatile compounds, Assay and purity		
Referei	nces:		
1.	Fundamental of Analytical Chemistry, D.A. Skoog, D.M. West, Holler and Crouch, 8th edit	tion,	
	Saunders College Publishing, New York, (2005).		
2.	Analytical Chemistry, G.D. Christian, 5th ed, John Wiley & Sons, Inc, India (2001).		
3.	Quantitative Analysis, R.A. Day and A.L. Underwood, 6th edition, prentice Hall, Inc. New Delhi,		
	(1993).		
4.	Vogel's Textbook of Quantitative Chemical Analysis, J. Mendham, R.C. Denney, J.D. Barnes and		

M.J.K. Thomas, 6th edition, Third Indian Reprint. Pearson Education Pvt. Ltd., New Delhi, (2003).

Date

Course Coordinator

GEC 1: C. Environmental Chemistry and Waste management

Course Title: Environmental Chemistry and Waste	Course code: 21CHE3G1CL
management	
Total Contact Hours: 28 (02 L)	Course Credits: 02
Formative Assessment Marks: 15	Duration of ESA/Exam: 2h
Summative Assessment Marks: 35	

Course Outcomes (COs):

- 1. Understand the importance of safe environment
- 2. Study the Sources and consequences of environmental pollution
- 3. Importance of management of environment and waste disposal

At the end of the course, students will be able to:

- 1. Capable to introduce and educate people about the environment
- 2. Practice and adopt the skills for safe environment

Unit	Description	Hours
	Introduction: Layers of environment, ecosystem, Sources of pollution	
	Food : Adulteration and contamination with examples; Milk, butter, Oil, etc	
1	Pharmaceutical products: Prescription, storage, uses and side effects	12
	Water pollution: Sources-heavy metal ions, industrial waste, mining waste, domestic	
	and fertilizers, insecticides; Potable water and its requirements	
	Soil pollution: Causes, Soil erosion, loss of fertility and remedies	
2	Air pollution:Sources, greenhouse effect, causes and consequences, Control and	8
	remedies; Acid rain and its effects; Fog and photochemical fog; Importance of ozone	0
	Preservation of environment: Forestry, laws of safe environment	
	Waste management: Types of waste: Importance and side effects	
	Recyclability and reusability	
3	Disposal of Domestic waste, Industrial waste and construction waste and agricultural	8
5	waste; Conversion of domestic waste as manure and production of electricity	0
	Conversion of solid waste to useful products	
	Reusability of water	
Refere	ences:	
1.	Principles of Instrumental Analysis, Skoog, Holler and Nieman, Harcourt Afca, 2001.	
2.	Environmental Chemistry – A.K. De, (Wiley Eastern).	
3.	Environmental Chemistry – S.K. Banerji, (Prentice Hall India), 1993.	
4.	Chemistry of Water Treatment - S. D. Faust and O. M. Aly, (Butterworths), 1983.	
5.	Environmental Chemistry – I. Williams, John Wiley, 2001.	
6.	Food Analysis – A. G. Woodman, McGrawHill, 1971.	
7.	Foods: Facts and Principles – Shadaksharaswamy and Manay, Wiley Eastern, 1987.	

1. A Text Book of Soil Chemical Analysis - P. R. Hesse, CBS Publishers, 1994

Date

Course Coordinator

SEC 3: Semi-micro Qualitative Inorganic Analysis

Course Title: Semi-micro Qualitative Inorganic Analysis	Course code: 21CHE3S3P
Total Contact Hours: 56 (0-0-4P/week)	Course Credits: 02
Formative Assessment Marks: 20	Duration of ESA/Exam: 4h
Summative Assessment Marks: 30	

Course Outcomes (COs):

- 1. To be able to identify and separate less familiars ions such as Ti, W, Se, Mo, Ce, Th, Zr, V in addition to common cations and anions
- 2. Understand the concept of identification of cations and anions

At the end of the course, students will be able to:

- 1. Able to adopt the separation skills and identification techniques of various inorganic acidic and basic radicals
- 2. Acquire the skill to analyze and separate common interfering anions such as borate, acetate, phosphate, oxalate, etc.

SL No	List of experiments	Hours
	Semi micro Inorganic qualitative analysis (minimum of eight mixtures with three cations (one rare element) and two anions)	
1		56
	(L ⁱ⁺ , Mo ⁺⁺ , W ⁴⁺ , Zr ⁴⁺ , Ce ⁴⁺ , Ti ⁴⁺ , U ⁶⁺ , Cations and C ₂ O ₄ ²⁻ , CH ₃ COO ⁻ , BO ₃ ⁻ , PO ₄ ³⁻	,
	F ⁻ Anions)	
Refere	nces:	
1.	Vogel's Qualitative analysis, G Svehla and Sivasankar, Pearson press, 7th Ed 2012	
2.	Quantitative chemical analysis – Daniel, C.Harris, 7th edition, 2006.	
3.	Vogel's Textbook of Quantitative Chemical analysis, Mendham, Denney, Bar	rnes, Thomas
	Sivasankar, 6th Ed, Pearson publishers, 2009	
4.	A text book of quantitative inorganic analysis- A.I.Vogel, 3 rd edition, 1966.	
5.	Vogel's text book of quantitative chemical analysis - J.Basset, R.C.Denney, G. H.	Jeffere and J
	Mendhom, 5 th edition, 1989.	
6.	Vogel's Qualitative Inorganic Analysis, revised, G. Svehla, Longman, 7th Ed, 1996.	
7.	Practical Inorganic Chemistry, Marr and Rocket, 1972.	

Date

Course Coordinator

DSC9 P7: Instrumentation/ Physical Chemistry Practicals

Course Title: Instrumentation/ Physical Chemistry Practicals	Course code: 21CHE3C9P
Total Contact Hours: 56 (0-0-4P/week)	Course Credits: 02
Formative Assessment Marks: 20	Duration of ESA/Exam: 4 h
Summative Assessment Marks: 30	

Course Outcomes (CO's):

- 1. To provide practical training on preparation of different types of metalcomplexes.
- 2. To determine the concentration of metal ion in the solutions in different types of reactions. At the end of the course, students will be able to:
- 1. Able to estimate the amount of metal ion in given solutions
- 2. Gain hands on experience and knowledge about the synthesis of various metal complexes of different shapes.
- 3. Able to gain knowledge on hybridization and structures of complexes.

SL No	List of experiments	Hours
1	Flame emission spectrophotometric determination of sodium in pond/lake waters.	4
2	Spectrophotometric determination of Fe	4
3	Spectrophotometric determination of V	4
4	Spectrophotometric determination of Ti.	4
5	Flame emission spectrophotometric determination of potassium in pond/lake waters.	4
6	Determination of Ni spectrophotometrically.	4
7	Separation and determination of total cation concentration by ion exchange chromatography and EDTA	4
8	Separation and determination of total cation concentration by ion exchange chromatography and EDTA.	4
9	Separation of organic compounds by TLC -Acetanilide and Benzoic acid	4
10	Separation of organic compounds by TLC-Benzamide and benzoic acid	4
11	Fluoresence/FT-IR spectroscopic analysis	8
Referenc	ces:	1

- 1. Vogel's Qualitative analysis, G Svehla and Sivasankar, Pearson press, 7th Ed 2012
- 2. Quantitative chemical analysis Daniel, C.Harris, 7th edition, 2006.
- 3. Vogel's Textbook of Quantitative Chemical analysis, Mendham, Denney, Barnes, Thomas, Sivasankar, 6th Ed, Pearson publishers, 2009
- 4. A text book of quantitative inorganic analysis- A.I.Vogel, 3rd edition, 1966.
- Vogel's text book of quantitative chemical analysis J.Basset, R.C.Denney, G. H. Jeffere and J. Mendhom, 5th edition, 1989.
- 6. Vogel's Qualitative Inorganic Analysis, revised, G. Svehla, Longman, 7th Ed, 1996.
- 7. Practical Inorganic Chemistry, Marr and Rocket, 1972.

DSC10 P8: Quantitative analysis of Organic functional groups

Course Title: Quantitative analysis of Organic functional	Course code: 21CHE3C10P
groups	
Total Contact Hours: 56 (0-0-4P/week)	Course Credits: 02
Formative Assessment Marks: 20	Duration of ESA/Exam: 4 h
Summative Assessment Marks: 30	

Course Outcomes (CO's):

- 1. Training on quantitative analysis of functional groups in organic compounds
- 2. Helps to understand the structure and purity.

At the end of the course, students will be able to:

- 1. Acquire the skills for Quantitative analysis of functional groups by titrimetric methods
- 2. Able to identify the structure and also purity of compound.

SL No	List of experiments	Hours
1	Estimation of Hydroxyl Group (Alcohols and Phenols)	8
2	Estimation of Acetyl Group (O-acetyl)	4
3	Estimation of Methoxyl Group –Zeisel's Method	4
4	Estimation of carboxyl group	8
5	Estimation of Esters	4
6	Estimation of Amines	4
7	Estimation of Amide Group	4
8	Estimation of Urea	4
9	Estimation of Nitro Group	4
10	Estimation of Acid and ester/ Acid and amide mixture.	12
References:		
1.	Advanced physicochemical experiments – J. Rose, 1964	

- Advanced physicochemical experiments J. Rose, 1964
 A Text Book of Quantitative Inorganic Analysis A.I. Vogel, 5th Edn, 1989.
- A Text Book of Quantitative inorganic Analysis A.I. Vogel, 5 Edil, 1989.
 Instrumental Analysis Manual Modern Experiments for Laboratory G.G. Guilbault and
- L.G. Hargis, 1970
- 4. Quantitative Chemical Analysis Daniel C. Harris, 7thEdn., 2006.
- 5. Comprehensive Practical Organic Chemistry- VK Ahluwalia, Renu Aggarwal, 2001

Date

Course Coordinator Subject Committee Chairperson

<u>Note:</u> Students should undergo premiere Institutional and Industrial trip for 3-4 days in 3rd Semester for exposure to industries and research institutions.

Dept. Name: Chemistry Semester-IV

DSC11: Bioinorganic and Organometallic chemistry

Course Title: Bioinorganic and Organometallic chemistry	Course code: 21CHE4C11L
Total Contact Hours: 56	Course Credits: 04
Formative Assessment Marks: 30	Duration of ESA/Exam: 3 h
Summative Assessment Marks: 70	

Course Outcomes (CO's):

- 1. Understand the various aspects and concepts of bioinorganic chemistry.
- 2. Study the synthesis, properties and stability aspects of organometallic compounds.
- 3. Understand biologically important metal ions.

- 1. Gain advanced knowledge on biological functions of metal ions and their importance.
- 2. Able to understand the transportation of oxygen in biology.
- 3. Understand the synthesis and practical applications of organometallic compounds

Unit	Description	Hours		
	Metal Ions in Biological Systems: Outline of metal ions in biology, Essential and types			
	metals, active transport of Na and K, ionophore.			
	Metal Functions in Metalloprotein: Dioxygen Transport, Electron Transfer, Structural			
	Roles for Metal Ions.			
	Metalloprotein as enzymes - carboxy peptidase, (catalases, peroxidases, cytochrome			
Т	P450, copper oxidases), vitamin B_{12} coenzyme, enzyme action inhibition and poisoning.	12		
1	Synthetic model compounds, Interactions of Metal Ions and Nucleic Acids, Metal-Ion	12		
	Transport and Storage, Metals in Medicine,			
	Metalloenzyme Function: Hydrolytic Enzymes, Two-Electron Redox Enzymes,			
	Multielectron Pair Redox Enzymes, Rearrangements.			
	Metals in medicine – Metal deficiency (Fe, Mn, Cu and Zn), chelation therapy and metal			
	complexes as drugs.			
	Heme and Non-heme Systems:			
	Chlorophyll and its role in photosynthesis, transport and storage of dioxygen -heme			
	proteins, oxygen uptake, functions of Haemoglobin, myoglobin, hemerythrin, and			
	hemocyanins, synthetic oxygen carriers, metal storage and transport - ferritin and			
	transferrin, Electron transfer proteins – cytochromes and iron sulphur proteins.			
	Iron-Containing Proteins and Enzymes:			
	Introduction: Iron-Containing Proteins with Porphyrin, Ligand Systems, Myoglobin and			
П	Hemoglobin, Myoglobin and Hemoglobin Basics, Structure of the Heme Prosthetic	11		
	Group, Behavior of Dioxygen Bound to Metals, Structure of the Active Site in			
	Myoglobin and Hemoglobin, Binding of CO to Myoglobin, Hemoglobin, and Model			
	Compounds.			
	The Frontiers of Bioinorganic Chemistry:			
	Choice and Uptake of Metal Ions, Control and Utilization of Metal-Ion Concentrations,			
	Metal Folding and Cross-Linking, Binding of Metal Ions to Biomolecules, Electron-			
	Transfer Proteins, Substrate Binding and Activation, Atom- and Group-Transfer			
	Chemistry, Protein Tuning of the Active Sites.			
			Group I and II Metals in Biological Systems:	
--	---------	---	--	-------------
			Homeostasis and Group I Biomolecules: Homeostasis of Metals (and Some	
			Homeostasis	
]	III	Group II Biomolecules: Magnesium and Catalytic RNA, Analyzing the Role of the	11
			Metal Ion, The Group-I Intron Ribozyme, The Hammerhead Ribozyme, Calcium-	
			Dependent Molecules.	
			Biological nitrogen fixation: in-vivo and in-vitro nitrogen fixation.	
			Organometallic Reaction mechanisms	
			Fundamental reactions, substitution in carbonyl complexes, Mechanisms, Insertion	
			reactions, CO, SO ₂ , olefin insertions, oxidative additions, one electron, addition of	
			oxygen, reductive elimination, CH activation.	
		W	Hydrogenation : Hydrogenation of olerins (oxo reaction-cobait and modium oxo costalysts), corbonylation of alcohols. Monsente acetic acid process, Wacker process	11
	-	LV	Catalysis), carbonylation of alcohols – Monsanto acetic acid process, wacker process.	11
			Use of Organometallic Compounds as catalysts – Catalytic behavior – Homo catalysis –	
			Anchoring of Catalysts	
			Polymerization of olefins and acetylenes: Ziegler – Natta catalysis systems. Fischer –	
			Tropsch reaction, Water Gas Shift reactions.	
			Chemistry of Inorganic materials:	
			Synthesis of bulk materials, Chemical deposition, defects and ion transport, metal oxides,	
			nitrides and fluorides, chalcogenides, chevrel phases and thermoelectric, Framework	
		V	structures, hydrides and hydrogen storage materials, inorganic pigments, molecular	11
			materials and fullerides.	
			mojeties in the main chain ferrocene based condensation polymers, condensation	
			nolymers based on rigid polymers	
	Ref	eren	ces:	
	1	. Th	e Inorganic Chemistry of Biological process – M.N. Hughes, 2nd Edn. John Wiley and son	s, 1988.
	2.	Bioir	organic Chemistry - R.N. Hay, Ellis Horwood Ltd., 1984.Biological Inorganic Chemistry -	– An
		Intro	duction, R.R. Crichton, Elsevier, 2008.	
	3.	Tran	sition Metal Complexes as Drugs and Chemotherapetic Agents – N. Farrel Kluwer Academ	ic
		Publication, 1989.		
	4. -	Inorganic Chemistry – I.E. Huheg, R.L. Keiter and A.L. Keiter, 4th Edn, Addison Wesley, 2000		
	5. C	Bioinorganic Chemistry – A.K. Das, Books & Allied (P) Ltd., 2007.		
	0.	Organometallic Chemistry – R.C. Mehrothra and A. Singh, 2nd Edn., New Age, International		
	7	Publications, 2000. Fundamental Transition Metal Organometallic Chemistry – Charles M Lukehart Brookes Govel		1
	/ •	Publishing Company, 1985		-
	8.	The Organometallic Chemistry of the Transition metals: R H. Crabtree, 4th Edn., Wilev Interscien		ence,2005.
	9.	Basio	c Organometallic Chemistry – B.D. Gupta and A.J. Elias, Universities Press, 2010.	
	10.	Berti	ni, H.B. Gray, S.J. Lippard and J.S. Valentine: Bioinorganic Chemistry, University Science	Books.,
		1994	/2010	
	11.	R.C.	Mehrothra ad A. Singh: Organometallic Chemistry, New Age International, 2 nd Edn 2004.	
	12.	F.A.	Cotton and G. Wilkinson: Advanced Inorganic Chemistry, 6 th Edition, Wiley, 1999.	
	13.	Conc	epts and Models of Inorganic Chemistry, Douglas, McDaniel, Alexander, 3rd Ed., Wiley Ir	ndia, 2012.

DSC12: Thermodynamics

Course Title	Course code: 21CHE4C12L
Total Contact Hours:56	Course Credits:04
Formative Assessment Marks: 30	Duration of ESA/Exam: 3H
Summative Assessment Marks:70	

Course Outcomes (CO's)

- 1. Understand the various aspects and concepts of Thermodynamics.
- 2. Study the Statistical, Chemical, Classical and Nonequilibrium Thermodynamics.
- 3. Review of some importance and applications of Thermodynamics.

At the end of the course, students will be able to:

- 1. Gain through knowledge on basics of thermodynamics.
- 2. Able to compare different parts of Thermodynamics.
- 3. Understand the practical applications of Thermodynamics.

Unit	Description	Hours
Ι	Chemical Thermodynamics	11
Π	A brief resume of laws of thermodynamics (combined form of 1 st and 2 nd laws), entropy as a measure of unavailable energy, concept of fugacity and free energy, entropy and free energy changes and spontaneity of processes. Variation of free energy with T & P. Maxwell's relations, thermodynamic equations of state, limitations of Van't Hoff's equation, Nernst Heat theorem & its applications. Thirdlaw of thermodynamics, determination of third law of entropies.	11
	Brief resume of concepts of laws of thermodynamics, chemical potential and entropies.	
	Partial molar properties – partial molar free energy, partial molar volume, partial molar heat content, their significance. Determination of these quantity concept of fugacity and its determine by graphical method and compressibility factor method. Non-ideal systems – excess functions for non-ideal solutions. Relationship between mole fraction, molality and molarity activity co-efficients. Determination of activity co-efficient by EMF and solubility methods.	
Ш	Statistical Thermodynamics:	11
	Concepts of distribution, most probable distribution, Maxwell-Boltzmann distribution law. Partition functions – translational, rotational, vibrational and electronic partition functions. Calculation of thermodynamic properties in terms of partition functions. Fermi – Dirac Statistics – distribution law and applications to metal. Bose-Einstein statistics – distribution law and application to solids. Ensemble averaging, postulates of ensemble averaging. Canonical, grand canonical and micro canonical ensembles with corresponding distribution laws (using Lagranges method of undetermined multipliers).	
IV	Application of Thermodynamics:	11
	Entropy and free energy of mixing, partial molar quantities, partial molar volume and free energy (chemical potential), their significance and determinations. Gibbs- Duhem and Duham-Margules equations. Thermodynamics of Ideal Solutions : Deductions of laws of Raoult's ebullioscopy, cryoscopy and osmotic pressure. Quantitative treatment of Le-Chatelier principle. Thermodynamics of Non-ideal Solutions : Activity, activity coefficient-standard states.	
V	Non-equilibrium thermodynamics:	12
	Thermodynamic criteria for non-equilibrium states, Assumptions of non-equilibrium	

thermodynamics, uncompensated heat, entropy production and entropy flow, entropy balance,	
Onsager formalism, relation between forces and fluxes, transformations of generalized fluxes	
and forces, microscopic reversibility and Onsager's reciprocity relations. Electrokinetic	
phenomena, diffusion, electric conduction, irreversible thermodynamics for biological	
systems, coupled reactions.	
References:	
1. Molecular thermodynamics - Donald A. Mc Quarrie, John D. Simon University Science Books,	
California, 1999.	
2. Thermodynamics of Chemistry - S. Glastone, Affiliated East-West Press, New Delhi, 1960.	
3. Statistical Thermodyanics – M.C. Gupta, Wiley Eastern Ltd., 1993.	
4. Text Book of Physical Chemistry – Samuel Glastone, McMillan Indian Ltd., 2 nd Edn. 1974.	
5. Elements of Physical Chemistry – S. Glastone, McMillan Indian Ltd., 2 nd Edn., 1963.	
6. Modern Thermodynamics, A, Diego Casadei, Wolrd Scientific Publisher, 2016.	
7. Thermodynamics and Statistical Mechanics of Macromolecular Systems, Michael Bachman,	
Cambridge, 2014.	
8.A Textbook of Physical Chemistry, Dynamics of Chemical Reactions, Statistical Thermodynamics,	
Macromolecules and Irreversible Processes (Vol. 5), by K.L. KAPOOR	

Course Coordinator

DSE3: A. Modern Organic synthesis

Course Title:Modern Organic synthesis	Course code: 21CHE4E3AL
Total Contact Hours:56	Course Credits:04
Formative Assessment Marks: 30	Duration of ESA/Exam: 3H
Summative Assessment Marks:70	

Course Outcomes (CO's)

- 1. Understand basic concepts of heterocyclic transformation and rearrangements.
- 2. Predict the mechanism of Stereoselectivity and Retrosynthesis
- 3. Study thoroughly the basic concept of photochemistry
- 4. Understanding biochemistry of natural compounds

At the end of the course, students will be able to

- 1. Acquire knowledge on heterocyclic reaction mechanism.
- 2. Acquint with important mechanism of Stereoselectivity and Retrosynthesis.
- 3. Gain knowledge on photochemical reactions of organic compound.
- 4. Able to gain knowledge of basic biochemistry of natural compounds

Units	Description	Hours
Ι	Heterocyclic transformations and rearrangements	
	Heterocyclic Transformations:	
	(i) Coumarins to benzofurans	
	(ii) Sydonones to Pyrazoles	
	(iii) Chromones to Pyrazoles	
	(iv) Furans to Pyridines.	
	Heterocycles in Functional Group Transformations:	
	(i) Alkanes from Thiophenes.	
	(ii) Cycloalkanes from Pyrazolines.	11
	(iii) Dienes from Pyrroles.	
	(iv) Alcohols from isoxazodiolines.	
	Rearrangements in Heterocycles:	
	(i) Dimoroth Rearrangement	
	(ii) Boulton-Katritzky Rearrangement	
	(iii) Fischer Indole cyclisation	
	(iv) Patterno-Buchi reaction.	
Π	Stereoselectivity and Retrosynthesis, Stereoselectivity: Classification,	
	terminology, and the principle of Stereoselectivity, Strategy of stereoselective	
	synthesis. Acyclic stereo selection.Enantioselective synthesis, diasteroselection in	
	cyclic compounds. Catalytic hydrogenation, alkylation, stereoselective formation of	
	the double bond, stereoselective cyclization of polyenes. Protection and deprotection	
	of functional groups.	
	Retrosynthesis: Introduction, retrosynthetic strategies for target molecules: group-	
	oriented strategies, functional group interconversion (FGI), functional group addition	
	(FGA), and functional group removal.	12
	Disconnection approach: Disconnection of bonds in ring systems and bonds joining	
	ring atoms to functional groups or other residues. Retro Diels-Alder reaction.	
	Retroanalysis of Benzocaine, Indole-3-acetic acid, cyanohydrins, 6-methyl quinoline.	
III	Organic Photochemistry	

	Interaction of electromagnetic radiation with matter, types of excitations, Jablonski	
	diagram, the fate of excited molecule, quantum yield, transfer of excited energy.	
	Intramolecular reactions of the olefinic bond: Geometrical isomerism, cyclization	
	reactions, rearrangement of 1,4 – and 1,5 – dienes.	
	Intramolecular reactions of carbonyl compounds: Saturated, cyclic, and acyclic.	
	α , β -unsaturated compounds, Norrish Type I and II reactions, and photochemistry of	
	cyclohexadienones.	11
	Intermolecular cycloaddition reactions: Dimerisations and oxetane formation.	
	Patterno Büchi Reaction. Isomerization, addition, and substitutions of aromatic	
	systems.	
IV	Steroids and Sex hormones	
	Introduction, classification, sterols, sex hormones, androgens, estrogens.	
	Non-steroidal estrogens and their clinical applications.	
	Synthesis and mode of action of hormones: Androsterone, testosterone, and	
	estrone.	11
	Synthesis and therapeutic applications of non-steroidal hormones:	
	diethylstilbestrol hexestrol and dienestrol	
	Progestins: progesterone and norethynodrel	
V	Cenetic code and structure Cell membrane	
•	Genetic code: protein synthesis and role of various types of RNA micro RNA and	
	its functions inhibitors of protein synthesis enzyme induction. Operon concept	
	DNA replication recombinant DNA technology and genetic engineering Plasmids	
	Vactors, gene cloning gene libraries, screening of gene libraries. Insertion of foreign	
	DNA inte celle Methode to study gane expression. Delymetrose chain reaction	10
	(DCD)	10
	(FCR).	
	Cell memorane structure: Fluid mosaic model of memorane structure, Memorane	
	nulany, Mashanian of anomic solute transment Languhanes and their anglisetions.	
	Mechanism of organic solute transport, Lonophores, and their applications,	
	Memoranes channels, Liposomes.	
DEED		
		1
I. An	Introduction of the Chemistry of Heterocyclic Compounds – R.M. Achenson, 4th Edn., Jo	onn
Wile	ey & Sons. 2008	
2. The	Principles of Heterocyclic Chemistry – A.R. Katritzky and J.J. Logowski, 2013	
3. Hete	erocyclic Chemistry – R.K. Bansal, 3rd Edn., New Age International Publishers (2002).	
4. Organic Chemistry: Carey. 2019		
5. Ster	eochemistry: Conformation and Mechanism /th ed. Edition– P. S. Kalia, 2009	
6. Ster	eochemistry of Organic Compounds: Principles and Applications – D. Nasipuri, 1991.	
7. Des	igning Organic Syntheses: A Programmed Introduction to the Synthon Approach – S. Wa	arren,
Wile	ey. Wiley; 1st edition, 1978	
8. Bur	ger's Medicinal Chemistry, Drug Discovery, and Development– Burger, 2010.	
9. Wil	son and Gisvold's Textbook of Organic Medicinal and Pharmaceutical Chemistry – Wilso	on and
Gisv	vold. Lippincott Williams and Wilkins; 12th revised North American ed edition, 2010.	
10. Bentley's Textbook Of Pharmaceuticals (Old Edition)- B.A. Rawlins Elsevier/bsp Books Pvt.		. Ltd.
(bsp), 2010	
11. The Organic Chemistry of Drug Design and Drug Action Hardcover-R. B. Silverman, Academic		
Pres	s; 3rd Edn.,2014.	
12. Tex	tbook of organic medicinal and pharmaceutical chemistry, Ed. Robert E. Dorge, Lippinco	ott,

Philadelphia, ©1977.

- 13. Fundamentals of photochemistry, K.K. RohtagiMukhjerji, Wiley Eastern, Wiley Eastern Ltd., New Delhi, Bangalore, Bombay 1978.
- 14. Organic Photochemistry (Cambridge Texts in Chemistry and Biochemistry), J. Coxon and B. Halton, Cambridge University Press; 2nd edition, 2011.
- 15. Molecular reactions and photochemistry, Depuy and Chapman.Prentice Hall, 1972.
- 16. Molecular Biotechnology, Glick and Pasteynak, American Society for Microbiology; 4th edition, 2010.
- 17. Physical Biochemistry, Frifielder, 1983
- 18. Principles of Biochemistry, A. L. Lehninger, WH Freeman; 7th ed. 2017.
- 19. Recombinant DNA: Short Course, J.D.Watson, WH Freeman; 3rd ed. 2006.

DateCourse CoordinatorSubject Committee Chairperson

DSE3: B. Natural products of Biological Importance

Course Title: Natural products of Biological	Course code: 21CHE4E3BL
Importance	
Total Contact Hours:56	Course Credits:04
Formative Assessment Marks: 30	Duration of ESA/Exam: 3H
Summative Assessment Marks:70	

Course Outcomes (CO's)

- 1. Understand the structure and biochemistry of Proteins, Peptides and Nucleic acids.
- 2. Study structure and function of Lipids, Vitamins and Polysaccharides
- 3. Gain knowledge onenzymatics mechanism and biogenesis of natural compounds

At the end of the course, students will be able to

- 1. Gain knowledge on structure and determination of protein, peptides and nucleic acids.
- 2. Students able to understand the mechanism of enzyme reactions.
- **3.** Able to synthesize selected natural products.

Units	Description	Hours
Ι	Proteins and Peptides	
	Proteins: Structure determination: C and N terminal residue determination, primary,	
	secondary, tertiary, and quaternary structure determination, denaturing and	
	denaturing of proteins.	
	Peptides: Structure and conformation of the peptide bond, peptide synthesis:	
	Solution phase and Merrifield's solid-phase synthesis, Racemization and use of	11
	HOBt, Synthesis of oxytocin and vasopressin.	
II	Nucleic acids: Introduction, structure and synthesis of nucleosides and nucleotides,	
	protecting groups for the hydroxy group in sugar, the amino group in the base and	
	phosphate functions. Methods of formation of internucleotide bonds: DCC,	
	phosphodiester approach and phosphoramide methods.	
	Polysaccharides: Different classes, structure and function of polysaccharides, homo	
	and heteropolysaccharides, mucopolysaccharides, proteoglycans, bacterial	11
	polysaccharides, mucins blood group substances, lectins and their functions.	
III	Lipids, Vitamins and Coenzymes:	
	Lipids: Simple and complex lipids, triacylglycerol phospholipids, plasmalogens,	
	cardiolipids, glycolipids, gangliosides and cerebrosides.	
	Vitamins and Coenzymes: Classification- Fat soluble and water-soluble vitamins	11
	(source, biological functions and deficiency disorders), coenzyme forms of the	
	vitamin B complex.	
IV	Chemistry of enzymes:	
	Introduction, nomenclature, classes and general types of reactions catalyzed by	
	enzymes. Properties of enzymes: 1) Enzyme efficiency/catalytic power 11) Enzyme	
	specificity; Fischer's 'lock and key' and Koshland 'induced fit' hypothesis. Concept	
	and identification of active site.	
	Factors affecting enzyme kinetics: Substrate concentration, enzyme concentration,	
	temperature, pH, product concentration etc. Reversible and irreversible inhibition.	10
	Nechanism of enzyme action: transition-state theory, orientation and steric effect,	12
	acid-base catalysis, covalent catalysis, strain or distortion. Mechanism of	
	cnymotrypsin catalyzed hydrolysis of a peptide bond.	

	V	Biogenesis and biosynthesis of natural products:	
		Biogenesis: Precursors, primary and secondary metabolites. Acetate hypothesis.	
		Mevalonate and Shikimic acid pathways.	
		General principles involved in the biosynthesis of amino acids, alkaloids, steroids	
		and terpenoids.	11
		Biosynthesis of selected natural products: L-tryptophan, cholesterol, ephedrine,	
		citronellol.	
Re	ferenc	res	
1)	L. Fi	nar, Organic Chemistry, ELBS Longmann, Vol. I & II, 1984.	
2)	K. A editio	lbert, L. Lehninger, D.L. Nelson, M.M. Cox, Principles of Biochemistry, CBZ publion, New Delhi, 1993.	shers, 1st
3)	Harp	er's Biochemistry, Ed. R.Harper, 22nd edition, Prentice Hall Press, New York, 1990.	
4)	Ency	clopedia of Chemical Technology – Kirck-Othmer series, 4 December 2000	
5)	Harp LAN	er's Review of Biochemistry – P.W. Martin, P.A. Mayer and V.W. Rodfwell, 15t GE Medical Publications, 1981.	h edition,
6)	Mauı	zen Asian Edition, California, 1981.	
7)	Immo	obilized biocatalysts. Winfried Hartmeister, Springer Berlin, Heidelberg 1988	
8)	Mole	cular Biotechnology, Glick and Pastevnak, American Society for Microbiology: 3r	d edition.
•)	2002		
9)	Princ	iples of Biochemistry, A. L. Lehninger, WH Freeman: 7th ed. 2017 edition, 2017	
10) Biocl	nemistry, L.Stryer, WH Freeman: 8th ed. Edition, 2015	
11) Biocl	nemistry. VoietasVoiet. Wiley: 5th edition 2018	
12	Bioo	roanic Bioinorganic and Supramolecular chemistry PS Kalsi and LP Kalsi	New Age
14	Inter	national Publishers, New Age International Pvt Ltd Publishers, 2008	itew rige
13) The (Am.	Drganic Chemistry of Enzyme-Catalysed Reactions, Academic Press, By Richard B. Si Chem. Soc. 2000, 122, 33, 8103–810, 2000	lvermanJ.
14) Enzy	mes: Practical Introduction to structure, mechanism and data analysis, By Robert A. (Copeland,
1 =	Wile	y- v CH, Inc.,2000.	1 . 1
12	comp	Organic Chemistry of Biological Pathways By John McMurry, Tadhg Begley by R pany publishers. WH Freeman; 2nd edition, 2015	obert and
16) Bioor Verla	rganic Chemistry- A practical approach to Enzyme action, H. Dugas and C. Penny.	Springer
17) Biocl 2nd e	nemistry: The chemical reactions in living cells, By E. Metzler. Academic Press. Academ edition, 2003	nic Press;
18) Conc	epts in biotechnology by D. Balasubrarnanian& othersUniversities Press, 2004	

Course Coordinator

DSE3: C. Bioorganic chemistry

Course Title: Bioorganic chemistry	Course code: 21CHE4E3CL
Total Contact Hours:56	Course Credits: 04
Formative Assessment Marks: 30	Duration of ESA/Exam: 3H
Summative Assessment Marks:70	

Course Outcomes (CO's)

- 1. Understand the chemistry of living cell.
- 2. Study enzymatic reactions and their biotechnological applications.
- 3. Gain knowledge on Pharmacokinetics and pharmacodynamics of drug design.

At the end of the course, students will be able to

- 1. Aquint knowledge on how chemical reactions occur at the cellular level.
- 2. Acquire skills and information on technological applications of enzyme actions in biology.
- **3.** Gain knowledge on inventive process of finding new medications based on the knowledge of a biological target

Units	Description	Hours
Ι	Introduction to Bioorganic Chemistry:	11
	Overview of Bioorganic Chemistry- Historical Connection Between Organic and	
	Biological Chemistry; Weak Interactions in Organic and Biological World; Proximity	
	Effect in Organic Chemistry; Molecular Recognition.	
	Chemistry of the Living Cells:	
	Analogy Between Biochemical and Organic Reaction, Chemistry of the Peptide Bond,	
	Nonribosomal Peptide Bond Formation, Asymmetrie Synthesis of a-Amino Acids,	
	Asymmetrie Synthesis with Chiral Organometallic Catalysts.	
II	Enzymes and enzyme-catalyzed reactions	12
	Enzymes: Multifunctional Catalysis and Simple Models, Introduction and historical	
	perspective, α -Chymotrypsin, chemical and biological catalysis.	
	Enzymes properties:	
	Remarkable properties of enzymes like catalytic power, specificity and regulation.	
	Nomenclature and classification, extraction and purification. Fischer's lock and key	
	and Koshland's induced fit hypothesis, concept and identification of active site by the	
	use of inhibitors, affinity labeling and enzyme modification by site-directed	
	mutagenesis.	
	Enzyme kinetics:	
	Michaelis-Menten and Lineweaver- Burk plots, reversible and irreversible inhibition.	
	Kinds of Reactions Catalysed by Enzymes: Nucleophilic displacement on a	
	phosphorus atom, multiple displacement reactions and the coupling of ATP cleavage	
	to endergonic processes. Transfer of sulfate, addition and elimination reaction, enolic	
	intermediates in isomerization reactions, -cleavage and condensation, some	
	isomerization and rearrangement reactions. Enzyme catalyzed carboxylation and	
	decarboxylation.	
III	Coenzymes and biotechnological applications	10
	Co-Enzyme Chemistry:Oxidoreduction, Pyridoxal Phosphate, Suicide Enzyme	
	Inactivators and Affinity Labels, Thiamine Pyrophosphate, Cofactors as derived from	
	vitamins, coenzymes, prosthetic groups, apoenzyme.	
	Structure and biological function of coenzyme:	
	Thiamine pyrophosphate, Pyridoxal phosphate, NAD+, NADP+, FMN, FAD, lipoic	

	acid, vitamin B ₁₂ . Mechanism of reaction catalyzed by the above cofactors,Biotin.	
IV	Drug design	10
	Introduction to drug designing, combinatorial chemistry approach, lead-based	
	methods, the discovery of lead compounds, drug discovery without a lead-denevo	
	drug designing, Prodrug, concepts for drug design, conceptual pharmacokinetics in	
	drug designing.	
V	Pharmacokinetics and pharmacodynamics	12
	Pharmacokinetics: The dynamics of drug absorption, distribution, biotransformation	
	and elimination. Concepts of linear and non-linear compartment models.Significance	
	of Protein binding.	
	Pharmacodynamics: Mechanism of drug action. The relationship between drug	
	concentration and effect Receptors.Structural and functional families of receptors.	
	Quantitation of drug receptors interaction and elicited effects	
Referen	ices:	
1, H	lermann Dugas: Bioorganic Chemistry-A chemical Approach to Enzyme Action; 3r	d Edition.
S	Springer; 3rd ed. 1996. CBS Publishers and Distributors Pvt. Ltd., 2nd printing edition 1999.	
2. Pa	ge, M.I.; Williams, A. Enzyme Mechanisms, Royal Society of Chemistry. 1987	
3.	Silverman, Richard B. Organic Chemistry of Enzyme Catalyzed Reaction.Academic	Press; 2nd
	edition, 2002	
4.	Bertini, I.; Gray, H.B.; Lippard, S. J.; Valentine, J.S. Bioinorganic Chemistry, Universi	ty Science
	Books.University Science Books,U.S., 1994	
5.	Drug Designs - A series of monographs in medicinal chemistry edited by A. J. Ariens.	Istedition,
	Vol. I, II, V, VIII & IX (only relevant chapters).1st Edition - 1978	
6.	Hand book of Clinical Pharmacokinetics by Gibaldi and Prescott.ADIS Health Science Pr	ress, 1983
7.	Applied biopharmaceutics and Pharmacokinetics by Leon Shargel and Andrew B.C.Y	uMcGraw
	Hill / Asia; 7th edition, 2016.	

Date	Course Coordinator	Subject Committee Chairperson
		<i>v</i> 1

DSE4: A. Advanced Chromatographic and Mass spectroscopic techniques

Course Title: Advanced Chromatographic and Microscopic echniques	Course code: 21CHE4E4AL
Total Contact Hours: 56	Course Credits: 04
Formative Assessment Marks: 30	Duration of ESA/Exam: 3 h
Summative Assessment Marks: 70	

Course Outcomes (CO's):

- 1. Understand the importance of inorganic spectral methods and structural aspects.
- 2. Study the advanced and instrumental separation techniques

At the end of the course, students will be able to:

- 1. Combining the different spectral information to gain additional analytical skills.
- 2. Confirmation of molecular structures from the available data.

Unit	Description	Hours
	Instrumental methods of chromatography:	
	General description, definition, terms and parameters used in chromatography,	
	classification of chromatographic methods, criteria for selection of stationary and	
	mobile phase and nature of adsorbents.	
	Column chromatography: Theories, plate theory, rate theory, band broadening-	
	eddy diffusion, longitudinal diffusion and resistance to mass transfer, column	
	efficiency, Van Deemter's equation and its modern version, interrelationships,	
	capacity factor, selectivity factor, column resolution, distribution constant and	
1	applications of conventional column chromatography, advantages and limitations.	12
	Gas Liquid Chromatography:	
	Principle, instrumentation, apparatus-columns, sample application, mobile phase,	
	stationary phase, detectors, thermal conductivity, flame ionization and mass	
	spectrometry, factors affecting separation, retention volume, retention time and	
	applications.	
	HPLC Principles:	
	Instrumentation- columns, stationary phase and matrices, column packing, sample	
	application, mobile phases, pumps, detectors ,advantages and applications.	
	Mass Spectroscopy:	
	Introduction – Basic theory, ionsation, types of ions – molecular ion, fragment ion,	
	meta stable ion and isotope ions, base peak, instrumentation. Fragmentation	
	processes, representation of fragmentation, basic fragmentation types and rules	
	factors affecting fragmentation and reaction pathways. Intensity of M^+ peaks of	
	alkanes, alkenes, alkvnes, alcohols, amines, aldehvdes and other compounds. Ion	
	analysis, ion abundance. Fragmentation patterns of glucose, myrcene, nicotine.	
2	retro Diels-Alder fragmentation. Mc Laffarty rearrangement, nitrogen rule, some	11
	simple examples of fragmentations, applications of mass spectrometry. Application	
	in structure elucidiation and evaluation of heats of sublimation & ionization	
	potential. High resolution mass spectroscopy. GC-MS and LC-MS. Composite	
	problems involving the applications of UV, IR, 1H and 13C-NMR and mass	
	spectroscopic techniques. Structural elucidation of organic molecules.	

	Molecular Luminescence:		
	Principles of Fluorescence and Phosphorescence - Fluorimetry in Chemical		
	Analysis - Instrumentation in Fluorimetry - Fluorescence and Chemical		
	Structure and - Fluorescence in quenching and inner filter effect -		
	Phosphorescence Spectroscopy – Jablonski diagram- Phosphorescence and		
	Chemical Structure - Phosphorimetry in Quantitative Analysis		
3	Chemiluminoscence:	11	
	Principles measurement of Chemiluminescence Quantitative Analysis		
	Titrations Electrochemiluminescence - Quantitative Analysis -		
	Polarimatury and Polated Matheda a		
	Polarimetry and Related Methods:		
	Polarized light - Applications of Polarimetry - Optical Rotatory Dispersion and		
	Circular Dichroism –cotton effect, Instrumentation in ORD and CD.		
	Electron Spin Resonance Spectroscopy:		
	Introduction - Presentation of spectrum – ESR transitions and selection rules		
	Hyperfine splitting in various structures – Factors affecting "g" values. Zero field		
	splitting and Kramer's degeneracy Anisotropy in Hyperfine coupling constant -		
	Nuclear Quadrupole interactions – Spin Hamiltonian – Electron delocalization		
	instrumentations and applications to simple inorganic and organic free radicals and		
	to inorganic complexes.		
	Mössbauer Spectroscopy		
	Introduction – Mössbauer effect – Resonance absorption of gamma rays conditions		
4	for Mössbauer spectroscopy – Mössbauer parameters – Isomer shift – electric	11	
	quadruple interaction – Magnetic interactions – Instrumentation & applications to		
	Fe ₃ (CO) ₁₂ , Prussian blue, Oxyhemerythrin, Hexacyano ferrates, Netroprusside and		
	Tin halides. Application to the study of Fe2+ and Fe3+ compounds, $Sn2+$ and		
	Sn4+ compounds (nature of M-L bond, coordination number and structure).		
	detection of oxidation states and inequivalent Mössbauer atoms		
	Nuclear Ouadruple Resonance Spectroscopy:		
	Introduction – Nuclear Ouadruple Moment – Electric field gradient – Asymmetry		
	parameter – Nuclear Ouadruple transition – Effect of external magnetic field –		
	Applications.		
	Electroseparation techniques:		
	Supercritical fluid chromatography: Introduction, Properties of supercritical		
	fluids. Instrumentation, and applications.		
	Electrophoresis: Principle, classification, capillary electrophoresis.		
5	Instrumentation, Application to capillary zone electrophoresis, gel	11	
	electrophoresis.		
	Electrosmosis: Principles, Instrumentation and applications.		
	Field flow fractionation: Separation mechanisms. Methodology Advantages over		
	chromatographic methods.		
Reference	Pes:		
1. Fur	damental of Analytical Chemistry, D.A. Skoog, D.M. West, Holler and Crouch, 8 th	edition.	
Saunders College Publishing, New York. 2005.			
 Analytical Chemistry, G.D. Christian, 5th ed., John Wiley & Sons, Inc, India, 2001. Quantitative Analysis, R.A. Day and A.L. Underwood, 6th edition, prentice Hall, Inc. Nev 1993 			
		Jew Delhi	
4. Sp	4. Spectroscopy of Organic compounds – P.S. Kalsi, Wiley Eastern Ltd. (India) / New Age		
International Publications, New Delhi (8 ^h Edn.), 2020			
5. Or	5. Organic Spectroscopy – William Kemp 3 rd Edn. ELBS, 1993		

- 6. Application of absorption spectroscopy of organic compound John R Dyer, Prentice Horll India, EEE, Recent Edn., 1965.
- 7.Instrumentatal Method of Chemical analysis G.R. Chatwal and S.K. Anand, Himalaya Publication House, Delhi (Recent Edn.), 2011.
- 8. Instrumental methods of chemical analysis. B.K. Sharma Goel Publishing House Meerut, 2014.
- 9. Molecular structures and Spectroscopy G. Aruldhas, Prentice Hall India, New Delhi, 2008.
- Spectroscopic methods in organic chemistry D.H. Williams, I. Fleming Tata McGraw Hill, 2007.

Course Coordinator

DSE4: B. Applied Analysis

Course Title: Applied Analysis	Course code: 21CHE4E4BL
Total Contact Hours: 56	Course Credits: 04
Formative Assessment Marks: 30	Duration of ESA/Exam: 3 h
Summative Assessment Marks: 70	

Course Outcomes (CO's):

- 1. Understand the importance of analysis of various daily usable items like food, water, etc
- 2. Approach of various methods of analysis.
- 3. To know the methods of analysis for daily life

At the end of the course, students will be able to:

- 1. Apply fundamental and basic knowledge to analysis of various substance used in daily life.
- 2. Able to apply analytical techniques for different applications.

Unit	Description	Hours
Unit	Description Food analysis: Objectives of food analysis. Sampling procedures. Detection and determination of sugars and starch. Methods for protein determination. Oils and fats and their analysis – iodine value, saponification value and acid value. Rancidity - detection and determination (peroxide number). Tests for common edible oils. Analysis of foods for minerals - phosphorus, sodium, potassium and calcium. General methods for the determination of moisture, crude fibre and ash contents of food. Analysis of milk for fat and added water. Non-alcoholic beverages -determination of chicory and caffeine in coffee; caffeine and tannin in tea. Alcoholic beverages -methanol in alcoholic drinks and ablemal hydrate in toddy. Food additives - abamical - preservatives - increasing	Hours 12
	and chloral hydrate in toddy. Food additives - chemical, preservatives - inorganic preservatives - sulphur dioxide and sulphites, their detection and determination. Organic preservatives - benzoic acid and benzoates, their detection and determination. Flavouring agents - detection and determination of vanilla and vanillin. Coloring matters in foods - classification, certified colors, detection of water soluble dyes, color in citrus fruits, beet dye in tomato products, mineral color. Pesticide residues in foods - determination of chlorinated organic pesticides. Control food quality - codex alimentarius, Indian standards.	
2	Water pollution and analysis: Water resources, origin of wastewater, types of water pollutants; their sources and effects, chemical analysis for water pollution control - objectives of analysis, parameters of analysis, sample collection and preservation. Environmental and public health significance and measurement of colour, turbidity, total solids, acidity, alkalinity, hardness, chloride, residual chlorine, chlorine demand, sulphate, fluoride, phosphates and different forms of nitrogen in natural and waste/polluted waters, heavy metal pollution - public health significance of Pb, Cd, Cr, Hg, As, Cu, Zn and Mn, general survey of the instrumental techniques for the analysis of heavy metals in aquatic systems, organic loadings – significance and measurement of DO, BOD, COD, TOD, and TOC, phenols, pesticides, surfactants and tannin and lignin as water pollutants and their determination.	8
3	Kinetic methods of analysis: I Introduction, basis of kinetic methods, rate law expressions. Classifying chemical	12

Automated methods of analysis: An overview. Principles of automation. Automated instruments: process control. Continuous analyzers. Discrete autoanalyzers. Instruments used in automated process control. Automatic instruments - discrete and continuous flow sampling instruments. Flow injection analysis – principles - dispersion co-efficient. Factors affecting peak height, sample volume, channel length and flow rate, and channel geometry. Applications - limited dispersion applications, medium dispersion applications, stopped flow methods and flow injection titrations. Discrete automatic systems - centrifugal fast scan analyzer, automatic organic elemental analyzers. Analysis based on multilayer films-general principles, film structures, instrumentation, performance and applications – blood urea nitrogen, blood glucose and potassium. 12 Biomedical and forensic analysis: Composition of body fluids and detection of abnormal levels of certain constituents leading to diagnosis of disease. Sample collection and preservation of physiological fluids (blood, serum, urine). Blood - estimation of glucose, cholesterol, urea, haemoglobin and bilirubin. Urine - urea, uric acid, creatinine, calcium phosphate, sodium, potassium and chloride. 82Biological significance, analysis: General discussion of poisons with special reference to mode of action of cyanide, organophosphates and snake venom. Estimation of poisonous materials such as lead, mercury and arsenic in biological materials. References: 1. Fundamental of Analytical Chemistry, D.A. Skoog, D.M. West, Holler and Crouch 8 th edition, Saunders College Publishing, New York, 2005. 2. Analytical Chemistry, G.D. Christian, 5th edition, John Wiley & Sons, Inc. India, 2001. 3. Quantitative Analysis, R.A. Day and A.L. Underwood, 6th edition, Prentice Hall,Inc. New Delhi, 1993.		kinetic methods – direct-computation integral methods, direct-computation rate methods, curve-fitting methods. Instrumentation. Quantitative applications – enzyme catalyzed reactions, non-enzyme catalyzed reactions, non-catalytic reactions. Determining Vmax, Km for enzyme catalyzed reactions. Elucidating mechanism for the inhibition of enzyme catalysis. Determination of enzymes, LDH, GOT and GPT. Determination of substrates – urea, uric acid, blood glucose and blood alcohol. Analysis of closely related compounds - neglect of reaction of slow reacting component method and logarithmic extrapolation method.	
 Biomedical and forensic analysis: Composition of body fluids and detection of abnormal levels of certain constituents leading to diagnosis of disease. Sample collection and preservation of physiological fluids. Analytical methods for the constituents of physiological fluids (blood, serum, urine). Blood - estimation of glucose, cholesterol, urea, haemoglobin and bilirubin. Urine - urea, uric acid, creatinine, calcium phosphate, sodium, potassium and chloride. 82Biological significance, analysis and assay of enzymes (pepsin, monoaminoxidase, tyrosinase); and hormones (progesterone, oxytocin, insulin). Chemical, instrumental and biological assays to be discussed wherever necessary. Forensic analysis: General discussion of poisons with special reference to mode of action of cyanide, organophosphates and snake venom. Estimation of poisonous materials such as lead, mercury and arsenic in biological materials. References: Fundamental of Analytical Chemistry, D.A. Skoog, D.M. West, Holler and Crouch 8thedition, Saunders College Publishing, New York, 2005. Analytical Chemistry, G.D. Christian, 5th edition, John Wiley & Sons, Inc. India, 2001. Quantitative Analysis, R.A. Day and A.L. Underwood, 6th edition, Prentice Hall,Inc. New Delhi, 1993. Vogel's Textbook of Quantitative Chemical Analysis, J. Mendham, R.C. Denney, J.D.Barnes and M.J.K. Thomas, 6th edition, Third Indian Reprint, Pearson Education Pvt.Ltd., New Delhi, 2003. Analytical Chemistry Principles, John H. Kennedy, 2nd edition, Saunders College Publishing, California, 1990. Instrumental Methods of Analysis by H.H. Willard, L.L. Merritt and J.A. Dean, 7th edition, 1988. Principles and Practice of Analytical Chemistry, F.W. Fifield and Kealey, 3rd edition, Blackwell 	4	Automated methods of analysis: An overview. Principles of automation. Automated instruments: process control. Continuous analyzers. Discrete autoanalyzers. Instruments used in automated process control. Automatic instruments - discrete and continuous flow sampling instruments. Flow injection analysis – principles - dispersion co-efficient. Factors affecting peak height, sample volume, channel length and flow rate, and channel geometry. Applications -limited dispersion applications, medium dispersion applications, stopped flow methods and flow injection titrations. Discrete automatic systems - centrifugal fast scan analyzer, automatic organic elemental analyzers. Analysis based on multilayer films-general principles, film structures, instrumentation,performance and applications – blood urea nitrogen, blood glucose and potassium.	12
 References: Fundamental of Analytical Chemistry, D.A. Skoog, D.M. West, Holler and Crouch 8thedition, Saunders College Publishing, New York, 2005. Analytical Chemistry, G.D. Christian, 5th edition, John Wiley & Sons, Inc. India, 2001. Quantitative Analysis, R.A. Day and A.L. Underwood, 6th edition, Prentice Hall,Inc. New Delhi, 1993. Vogel's Textbook of Quantitative Chemical Analysis, J. Mendham, R.C. Denney, J.D.Barnes and M.J.K. Thomas, 6th edition, Third Indian Reprint, Pearson Education Pvt.Ltd., New Delhi, 2003. Analytical Chemistry Principles, John H. Kennedy, 2nd edition, Saunders College Publishing, California, 1990. Instrumental Methods of Analysis by H.H. Willard, L.L. Merritt and J.A. Dean, 7th edition, 1988. Principles and Practice of Analytical Chemistry, F.W. Fifield and Kealey, 3rd edition, Blackwell 	5	Biomedical and forensic analysis: Composition of body fluids and detection of abnormal levels of certain constituents leading to diagnosis of disease. Sample collection and preservation of physiological fluids. Analytical methods for the constituents of physiological fluids (blood, serum, urine). Blood - estimation of glucose, cholesterol, urea, haemoglobin and bilirubin. Urine - urea, uric acid, creatinine, calcium phosphate, sodium, potassium and chloride. 82Biological significance, analysis and assay of enzymes (pepsin, monoaminoxidase, tyrosinase); and hormones (progesterone, oxytocin, insulin). Chemical, instrumental and biological assays to be discussed wherever necessary. Forensic analysis: General discussion of poisons with special reference to mode of action of cyanide, organophosphates and snake venom. Estimation of poisonous materials such as lead, mercury and arsenic in biological materials.	12
 Fundamental of Analytical Chemistry, D.A. Skoog, D.M. West, Holler and Crouch 8thedition, Saunders College Publishing, New York, 2005. Analytical Chemistry, G.D. Christian, 5th edition, John Wiley & Sons, Inc. India, 2001. Quantitative Analysis, R.A. Day and A.L. Underwood, 6th edition, Prentice Hall,Inc. New Delhi, 1993. Vogel's Textbook of Quantitative Chemical Analysis, J. Mendham, R.C. Denney, J.D.Barnes and M.J.K. Thomas, 6th edition, Third Indian Reprint, Pearson Education Pvt.Ltd., New Delhi, 2003. Analytical Chemistry Principles, John H. Kennedy, 2nd edition, Saunders College Publishing, California, 1990. Instrumental Methods of Analysis by H.H. Willard, L.L. Merritt and J.A. Dean, 7th edition, 1988. Principles and Practice of Analytical Chemistry, F.W. Fifield and Kealey, 3rd edition, Blackwell 	Referen	ces:	
 Publishing, California, 1990. 6. Instrumental Methods of Analysis by H.H. Willard, L.L. Merritt and J.A. Dean, 7th edition, 1988. 7. Principles and Practice of Analytical Chemistry, F.W. Fifield and Kealey, 3rd edition, Blackwell 	 Fundamental of Analytical Chemistry, D.A. Skoog, D.M. West, Holler and Crouch 8thedition, Saunders College Publishing, New York, 2005. Analytical Chemistry, G.D. Christian, 5th edition, John Wiley & Sons, Inc. India, 2001. Quantitative Analysis, R.A. Day and A.L. Underwood, 6th edition, Prentice Hall,Inc. New Dell 1993. Vogel's Textbook of Quantitative Chemical Analysis, J. Mendham, R.C. Denney, J.D.Barnes a M.J.K. Thomas, 6th edition, Third Indian Reprint, Pearson Education Pvt.Ltd., New Delhi, 20 5. Analytical Chemistry Principles, John H. Kennedy, 2nd edition, Saunders College 		tion, Delhi, nes and ni, 2003.
 6. Instrumental Methods of Analysis by H.H. Willard, L.L. Merritt and J.A. Dean, 7th edition, 1988. 7. Principles and Practice of Analytical Chemistry, F.W. Fifield and Kealey, 3rd edition, Blackwell 	Publishing, California, 1990.		
7. Principles and Practice of Analytical Chemistry, F.W. Fifield and Kealey, 3rd edition, Blackwell	6. Instrumental Methods of Analysis by H.H. Willard, L.L. Merritt and J.A. Dean, 7th adition 1988		
	7. P	rinciples and Practice of Analytical Chemistry, F.W. Fifield and Kealey, 3rd edition, Blac	kwell
Sci., Ltd. Malden, USA, 2000.		Sci., Ltd. Malden, USA, 2000.	
8. Modern Analytical Chemistry, David Harvey, McGraw Hill, New Delhi, 2000.	8. Modern Analytical Chemistry, David Harvey, McGraw Hill, New Delhi, 2000.		
9. Introduction to Instrumental Analysis, Braun, Pharm. Med. Press, India, 2 nd Edn., 2019.	9. Ir	ntroduction to Instrumental Analysis, Braun, Pharm. Med. Press, India, 2 ^{au} Edn., 2019.	

10. Instrumental Methods of Analysis, W. M. Dean and Settle, 7th edition, CBS Publishers, New Delhi, 1986.

11. Instant Notes of Analytical Chemistry, Kealey and Haines, Viva books Pvt. Ltd., 2002.

12. Soil Chemical Analysis, M.L. Jackson, Prentice Hall of India Pvt. Ltd., New Delhi, 1973.

13. Clinical Chemistry, Principles and Procedures, J.S. Annino, 2nd edition, Boston: Little,Brown, 1960.

- 14. Clinical Chemistry, Principles and Techniques, R.J. Henry, D.C. Cannon and J.W.Winkleman, Eds., 2nd edition, Hagerstorm, M.D: Harper and Row, 1974.
- 16. Fundamentals of Clinical Chemistry, N.W. Tietz, Ed., 2nd edition, Philaddphia: W.B.Saunders, 1976.
- 17. Food Analysis, A.G. Woodman, McGraw Hill. 1971.
- 18. Chemical Analysis of Foods, H.E. Cox and Pearson, 1962.
- 19. Analysis of Foods and Food Products, J.B. Jacob, 2013

20. A First Course in Food Analysis, A.Y. Sathe, New Age Internationals (P) Ltd.,

Publishers, Bangalore, 1999.

Date

Course Coordinator

DSE4: C. Environmental and Biochemical Analysis

Course Title: Environmental and Biochemical Analysis	Course code: 21CHE4E4CL
Total Contact Hours: 56	Course Credits: 04
Formative Assessment Marks: 30	Duration of ESA/Exam: 3 h
Summative Assessment Marks: 70	

Course Outcomes (CO's):

- 1. Study sources and effects of air, soil pollution
- 2. Understand the analysis of food and fuel analysis.

At the end of the course, students will be able to:

- 1. Able to analysedifferent types of pollutants in air, water and soil.
- 2. Capable to analyse food and fuels.

Unit	Description	Hours
	Environmental Segments and Air Pollution:	
	Air pollutants, prevention and control, Greenhouse effect and acid rain. CO	
	– industrial and transportation sources. So_x - sources, ambient concentration, test	
	methods, control techniques - scrubbing, limestone injection process. Ozone hole and	
1	CFC's. Photochemical smog and PAN. NO _x - sources, ambient concentration, test	12
	methods, thermodynamics and NO _x , control techniques. Particulates: size distribution.	
	Bhopal gas tragedy. Noise pollution.	
	Composition of soil – Inorganic and organic components in soil, micro	
	and macro nutrients, nitrogen and sulfur pathways.	
	Hydrologic cycle, sources, criteria and standards of water quality:	
	Safe drinking water, public health significance and measurement of colour,	
	turbidity, total solids, acidity, alkalinity, hardness, sulphate, fluoride, phosphate and	
	different forms of nitrogen in natural and polluted water. Determination of BOD, COD	
2	and TOC.	12
	Toxic chemicals in the environment, impact of toxic chemicals on enzymes.	
	Detergents – pollution aspects, Pesticides – pollution of surface water. Heavy metal	
	pollution. Chemical speciation – biochemical effects of heavy metals (Hg, As, Pb, Se),	
	carbon monoxide, nitrogen oxides, sulphur oxides and hydrocarbon. Treatment of	
	industrial liquid wastes.	
	Soll Analysis:	
	Physical properties of soil - soil texture and soil structure. Chemical	
	properties of soil – types of soil condes, types of clays and their swelling and	
	types of soil acidity liming measurement of pH and conductivity of soil soline and	
3	alkaline soils analysis of major constituents of soil – organic matter nitrogen	12
5	sulphur notassium and calcium	12
	Fuel Analysis.	
	Solid liquid and gaseous fuels: ultimate and proximate analysis heating values	
	grading of coal: liquid fuels: flash point, aniline point, octane number and cetane	
	number, carbon residue: gaseous fuels; producer gas and water gas, calorific valves.	

1			
		Food Analysis:	
	4	Estimation of moisture, ash, crude protein, fat, crude fiber, carbohydrate, calcium, potassium, sodium and phosphate in foods; Analysis of common adulterants in food; Milk and milk products – alcohol test, fermentation test, dye reduction tests (methylene blue and resazurin), tests to distinguish butter and margarine, phosphate test for pasteurization, estimation of added water; Beverages – caffeine and chicory in coffee, methanol in alcoholic drinks; estimation of saccharin, coal tar dyes, aflatoxins in foods; pesticide analysis in food products – extraction and purification of sample, gas chromatography for organophosphates, thin-layer chromatography for chlorinated pesticides.	12
		Noise pollution: Sources effects measurement Allowed limits and control	
Radioactive nollution: Sources, effects measurement		Radioactive pollution: Sources, effects, measurement, Allowed limits and control	
		and storage	
	5	Soil pollution:	10
		Classification of pollutants and their characteristics, sources, prevention and control.	
		Environmental laws to control water and air pollution	
	Refere	nces:	
	1.	Principles of Instrumental Analysis, Skoog, Holler and Nieman, Harcourt Afca, 2001.	
	2.	Environmental Chemistry – A.K. De, (Wiley Eastern).	
	3. Environmental Chemistry – S.K. Banerji, (Prentice Hall India), 1993.		
	4. Chemistry of Water Treatment – S. D. Faust and O. M. Aly, (Butterworths), 1983.		
	5.	Environmental Chemistry – I. Williams, John Wiley, 2001.	
	6.	Food Analysis – A. G. Woodman, McGrawHill, 1971.	
	7.	Foods: Facts and Principles – Shadaksharaswamy and Manay, Wiley Eastern, 1987.	
	8.	A Text Book of Soil Chemical Analysis – P. R. Hesse, CBS Publishers, 1994	

Course Coordinator

GEC 2: A. Chemistry for daily life

Course Title: Chemistry for daily life	Course code: 21CHE4G2AL
Total Contact Hours:28	Course Credits:02
Formative Assessment Marks: 15	Duration of ESA/Exam: 2H
Summative Assessment Marks:35	

Course Outcomes (CO's)

- 1. Understanding the importance of Chemistry in daily life
- 2. Inform on Drug chemistry and chemistry of soaps
- 3. Study the use of some chemical products
- At the end of the course, students will be able to

1.Know the role of Chemistry in our daily uses

2.Understand the applications of Chemistry in household activites

3.Get information about drugs and its side effects

UNIT	Description	Hours	
Ι	Chemistry of soaps:	10	
	Soaps, Detergents, surfactants, Diamond. Chemistry in Jewellary: Electroplating,		
	metals and metal alloys. Chemistry of Batteries: cells, wax candals, mosquito		
	coils and common salt. Chemistry of Cosmetics: Cosmetics formulation,		
	perfumes, and fragrances, deodorants, Colour cosmetics, sun protections,		
	Preservatives and its effects, Food toxicity		
II	Chemistry in Household	10	
	Chemistry and uses of Paints, pigments, Varnishes and coatings, cleaners, stain		
	removears, pesticides, Fire extinguishers, cement, glasses, fertilizers		
	Fuel Chemistry: Fuels, Introduction, fossil fuels with example, biomass energy,		
	Energy sources: Solar energy, wind energy, tidal energy, hydal energy, nuclear		
	energy. Chemical toxicity		
III	Chemistry of drugs and water	08	
	Drugs, classification, uses and side effects of pain relief drugs, antibiotics,		
	antacids, Stimulants, ointments, syrups, tablets and capsules, Anesthetic drugs,		
	energetic drugs.		
	Water Chemistry: Importance, sources, types, underground and surface water,		
	water contents, water born deceases, water purification		
Refere	ices		
1)	Chemistry in daily life by Kirpal Sing, PHI learning Pvt Ltd., 2012.		
2)	2) Engineering Chemistry by Dr. Suba Rameshm and Dr. S. Vairam, Wiley Publication, 2013		
3)	3) Drugs and pharmaceutical sciences Series, Marcel Dekkar, Vol.II, INC, New York, 2002.		
4)	Hand book of Fertilizer Technology By Swaminathan and Goswamy, 6 th Edn., 2001.		
5)	Medicinal Chemistry (VEdition) by Asthoush Kar, New Age International publisher,2010.		
6)	Food 6 facts and principles by N. Shakuntala Manay and S. Swamy, 4 th ED. New Age		
	International, 2008.		

GEC 2: B. Water and food quality and laws

Course Title: Water and food quality and laws	Course code:21CHE4G2BL
Total Contact Hours:28	Course Credits:02
Formative Assessment Marks: 15	Duration of ESA/Exam: 2H
Summative Assessment Marks:35	

Course Outcomes (CO's)

- 1. To develop theoretical aquatic chemistry basis and use the principles for the evaluation of water quality.
- 2. To analyse how aquatic chemistry principles can be applied in natural water resources and in treatment of drinking water and wastewater.
- 3. To know the chemistry and analysis of food

At the end of the course, students will be able to

- 1. Apply fundamental and basic knowledge to analysis of water.
- 2. Able to apply analytical techniques for food quality and assessments.
- 3. Understanding of different laws related to protection of environment.

Unit	Description	Hours
Ι	Analytics of water	10
	Analytical aspects of water: Sources, conservation of water, impurities in water and	
	their effects. Chemistry involved in sedimentation, coagulation and sterilization.	
	Softening of water, lime-soda, ion-exchange process and numerical problem. Boiler	
	troubles, causes and effects, methods of prevention.	
	Chemistry of water: the water molecule, properties of pure water, fresh water and	
	sea water. Composition of waters: surface water, ground water and sea water. Water	
	analysis: Measurement of temperature, transparency, turbidity, determination of pH,	
	electrical conductivity, salinity, chlorinity, dissolved oxygen, free carbon dioxide,	
	total alkalinity, total hardness, Water quality control, Composition of natural waters,	
	Sea water environment, Human impact on water resources, Methods of evaluation of	
	water quality: sampling and storage, water conservation-development of watersneds,	
	Kani water harvesting and ground water recharge.	
П	Food Quality and assessment	08
	Definition of food quality, food safety, Functions of food, Responsibility for food	
	quality and safety, Types of adulteration, Introduction to food contaminants, Types of	
	food contaminants, Methods of preventing food contaminants	
III	Regulations and Laws of water and food	10
	The water (Pollution and control of pollution) Act, 1974, The Water (Prevention and	
	Control of Pollution) Cess Act, 1977, Indian standards for drinking water (IS:10500,	
	2012).	
	Laws & regulations, Quality management system in India, Introduction to food laws,	
	National and International food laws, Governing bodies, Introduction to safety	
	assessment and safety evaluation, Definition of safety assessment, Definition of safety	
	evaluation, Laws & regulations, Quality management system in India, Laws &	
	regulations.	
Referen		
1.	Environmental Chemistry – A.K. De, (Wiley Eastern).	

- 2. Environmental Chemistry S.K. Banerji, (Prentice Hall India), 1993.
- 3. Chemistry of Water Treatment S. D. Faust and O. M. Aly, (Butterworths), 1983.
- 4. Environmental Chemistry I. Williams, John Wiley, 2001.
- 5. Food Analysis A. G. Woodman, McGrawHill, 1971.
- 6. Foods: Facts and Principles Shadaksharaswamy and Manay, Wiley Eastern, 1987.
- 7. A Text Book of Soil Chemical Analysis P. R. Hesse, CBS Publishers, 1994

Course Coordinator

GEC 2: C. Agro and Environmental Chemistry

Course Title: Agro and Environmental Chemistry	Course code: 21CHE4G2CL
Total Contact Hours: 28 (02 L)	Course Credits: 02
Formative Assessment Marks: 15	Duration of ESA/Exam: 2h
Summative Assessment Marks: 35	

Course Outcomes (COs):

- 1. Understand the importance of safe environment
- 2. Study the Sources and consequences of environmental pollution
- 3. Gain knowledge on the composition and importance of fertilizers, pesticides for agriculture

At the end of the course, students will be able to:

- 1. Capable to introduce and educate people about the environment
- 2. Practice and adopt the skills for safe environment
- 3. Able to properly use agro-products

Unit	Description	Hours	
	Agricultural products		
1	Micronutrients and macronutrients in soil, Importance of Nutrients for plants		
	Different nutrients for different products	9	
	Fertilizers; Different types, Composition and applications, Effects of excess use of)	
	fertilizers, pollution by fertilizers		
	Bio-based fertilizers and advantages		
	Insecticides: Composition and applications, side effects		
	Pesticides: Composition and applications, side effects		
	Weedicides: Composition and applications, side effects		
2	Preservative chemicals: Composition and side effects	9	
	Chemicals used for Ripening: Composition, uses and side effects		
	Food adulteratives and contaminants: Difference and side effects with examples		
	Rancidity of oil		
	Soil pollution: Causes, Soil erosion, loss of fertility and remedies		
3	Air pollution: Sources, greenhouse effect, causes and consequences, Control and	10	
	remedies	10	
	Water pollution: Sources, Effects, Control and procedure for purification		
Refere	nces:		
	1. Environmental Chemistry – A.K. De, New Age International, 8 th Edn., 2016		
	2. Environmental Chemistry – S.K. Banerji, (Prentice Hall India), 1993.		
	3. Chemistry of Water Treatment – S. D. Faust and O. M. Aly, (Butterworths), 1983.		
	4. Environmental Chemistry – I. Williams, John Wiley, 2001.		
5. Food Analysis – A. G. Woodman, McGrawHill, 1971.			
6. Foods: Facts and Principles – Shadaksharaswamy and Manay, Wiley Easter		37.	
	7. A Text Book of Soil Chemical Analysis – P. R. Hesse, CBS Publishers, 1994		

Date

Course Coordinator

DSC11P9: Spectral interpretation of data

Course Title: Spectral interpretation of data	Course code: 21CHE4C11P
Total Contact Hours: 56 (0-0-4P/week)	Course Credits: 02
Formative Assessment Marks: 20	Duration of ESA/Exam: 4h
Summative Assessment Marks: 30	

Course Outcomes (COs):

- 1. Practical approach for the interpretation of spectra of organic and inorganic compounds.
- 2. Train to predict the structure of compounds using spectral data

At the end of the course, students will be able to:

- 1. Able to interpret the spectral data which helps in the structural elucidation of compounds.
- 2. It strengthens the spectral analytical knowledge for Research, Industrial and teaching assignments.

SL No	List of experiments	Hours
1	 a. Preparation and Spectral analysis of few complexes and organic compounds (UV- Visible, IR, TGA). b. Interpretation of Spectral data (IR, NMR,& Mass) 	_
Referen		

- 1. Vogel's Qualitative analysis, G Svehla and Sivasankar, Pearson press, 7th Ed 2012
- 2. Vogel's Textbook of Quantitative Chemical analysis, Mendham, Denney, Barnes, Thomas, Sivasankar, 6th Ed, Pearson publishers, 2009
- 3. A text book of quantitative inorganic analysis- A.I.Vogel, 3rd edition, 1966.
- Vogel's text book of quantitative chemical analysis J.Basset, R.C.Denney, G. H. Jeffere and J. Mendhom, 5th edition, 1989.
- 5. Vogel's Qualitative Inorganic Analysis, revised, G. Svehla, Longman, 7th Ed, 1996.
- 6. Practical Inorganic Chemistry, Marr and Rocket, 1972.

Date

Course Coordinator

Project: Project work

Course Title: Project Work	Course code: 21CHE4C1R
Total Contact Hours: 112 (0-0-8P/week)	Course Credits: 04
Formative Assessment Marks: 30	Duration of ESA/Exam: 4 h
Summative Assessment Marks: 70	

Course Outcomes (CO's):

- 1. Students are exposed to research to motivate them for research career.
- 2. Trained for undertaking chemistry project works

At the end of the course, students will be able to:

- 1. Students gain expertise in research oriented work to develop the research knowledge in the concerned field.
- 2. It helps them to work in group as well as develop skills.

SL No	List of experiments	Hours
1	Project work either In-house or Research Institutes	112

Date

Course Coordinator

<u>CBCS Question Paper Pattern for PG Semester End Examination</u> with Effect from the AY 2021-22

Disciplines Specific Core (DSC) and Discipline Specific Elective (DSE)

Paper Code:Paper Title:Time: 3 HoursMax. Marks: 70Note: Answer any *FIVE* of the following questions with Question No. 1 (Q1) Compulsory, each
question carries equal marks.

Q1.	14 Marks
Q2.	14 Marks
Q3.	14 Marks
Q4.	14 Marks
Q5.	14 Marks

Note: Question No.1 to 5, *one question from each unit* i.e. (Unit I, Unit II,). The Questions may be a whole or it may consists of sub questions such as a,b, c etc...

Q6. 14 Marks Note :Question No.6, *shall be from Unit II and III*, the Question may be a whole or it may consists of sub questions such as a,b, c etc...

Q7. 14 Marks Note: Question No.7, *shall be from Unit IV and V*,the Question may be a whole or it may consists of sub questions such as a,b, c etc...

Q8. 14 Marks Note: Question No-8 shall be from *Unit II*, *Unit III*, *Unit IV and Unit V*. The question shall have the following sub questions and weightage. i.e a - 05 marks, b - 05 marks, c - 04 marks.

Skill Enhancement Courses (SECs)

Paper Code: Time: 1 Hours **Paper Title:**

Max. Marks: 30

There shall be Theory examinations of Multiple Choice Based Questions [MCQs] with Question Paper set of A, B, C and D Series at the end of each semester for SECs for the duration of One hour (First Fifteen Minutes for the Preparation of OMR and remaining Forty-Five Minutes for Answering thirty Questions). The Answer Paper is of OMR (Optical Mark Reader) Sheet.

Question Paper Pattern for Subjects with Tutorial

For the subjects with Tutorial component, there is no Semester-End Examination (SEE) to the component C3. The liberty of assessment of C3 is with the concerned faculty. The faculty must present innovative method of evaluation of component C3 before the respective BoS for approval and the same must be submitted to the Registrar and Registrar(Evaluation) before the commencement of the academic year.
