

VIJAYANAGARA SRI KRISHNADEVARAYA UNIVERSITY

JNANASAGARA CAMPUS, BALLARI-583105

Department of Studies in

Biotechnology

IV Semester Syllabus

Bachelor of Science/Commerce /Arts/etc...

With effect from 2021-22 and onwards

Department of Biotechnology

Semester-IV

DSC: 21BSC4C4BTL: Molecular Biology

Course Title: Molecular Biology	Course code: 21BSC4C4BTL	
Total Contact Hours: 56 Hrs	Course Credits: 04	
Internal Assessment Marks: 40	Duration of SEE: 02 Hrs	
Semester End Examination Marks: 60		

Course Outcomes (CO's):

At the end of the course, students will be able to:

- 1. Study the advancements in molecular biology with latest trends.
- 2. Will acquire the knowledge of structure, functional relationship of proteins and nucleic acids.
- **3.** Aware about the basic cellular processes such as transcription, translation, DNA replication and repair mechanisms.

DSC: 21BSC4C4BTL: Molecular Biology

Unit	Description	Hours
1	Molecular basis of life and Nucleic Acids:	
	An introduction RNA and experimental proof of DNA as genetic material	
	and types of DNA. Structure and functions of DNA and RNA, Watson and	
	Crick model of DNA and other forms of DNA (A and Z) functions of DNA	
2	and RNA including ribozymes.	11
Replication of DNA in prokaryotes and eukaryote– Enzymes and pro		11
	involved in replication, Theta model, linear and rolling circle model. Polymerases and all enzyme components. The replication complex: Pre-	
	primming proteins, primosome, replisome, unique aspects of eukaryotic	
	chromosome replication, Fidelity of replication	
3	Damage and Repair:	10
	DNA damage and Repair mechanism, photo reactivation, excision repair, mismatch repair and SOS repair.	
4	Transcription and RNA processing:	12
	Central dogma, RNA structure and types of RNA, Transcription in	
	prokaryotes RNA polymerase, role of sigma factor, promoter, Initiation, elongation and termination of RNA chains.	
	Transcription in eukaryotes: Eukaryotic RNA polymerases, transcription	
	factors, promoters, enhancers, mechanism of transcription initiation,	
	promoter clearance and elongation RNA splicing and processing: processing	
	of pre-mRNA: 5' cap formation, polyadenylation, splicing, rRNA and tRNA splicing.	
5		12
3	Regulation of gene expression and translation:	12
	Genetic code and its characteristics, Wobble hypothesis, Translation- in	

-				
		prokaryotes and eukaryotes- ribosome, enzymes and factors involved in		
		translation. Mechanism of translation- activation of amino acid, aminoacyl		
		tRNA synthesis, Mechanism- initiation, elongation and termination of		
		polypeptide chain. Fidelity of translation, Inhibitors of translation. Protein		
		folding and modifications, Post translational modifications of proteins.		
References:				
	1.	Glick, B.R and Pasternak J.J (1998) Molecular biotechnology, Principles and application		
		of recombinant DNA, Washington D.C. ASM press		
	2.	. Howe. C. (1995) Gene cloning and manipulation, Cambridge University Press, USA		
	3. Lewin, B., Gene VI New York, Oxford University Press			
	4.	. Rigby, P.W.J. (1987) Genetic Engineering Academic Press Inc. Florida, USA		
	5.	. Sambrook et al (2000) Molecular cloning Volumes I, II & III, Cold spring Harbor		
		Laboratory Press New York, USA		
	6. Walker J. M. and Ging old, E.B. (1983) Molecular Biology & Biotechnology (Indian			
		Edition) Royal Society of Chemistry U.K		
	7.	Karp. G (2002) Cell & Molecular Biology, 3rdEdition, John Wiley & Sons; I		

Date

Course Coordinator

Subject Committee Chairperson

Department of Biotechnology

Semester-IV

DSC: 21BSC4C4BTP: Molecular Biology Lab

Course Title: Molecular Biology Lab	Course code: 21BSC4C4BTP
Total Contact Hours:	Course Credits: 02
Internal Assessment Marks: 25	Duration of SEE: 03 Hrs.
Semester End Examination Marks: 25	

Course Outcomes (CO's):

At the end of the course, students will be able to:

- 1. Apply skills in molecular biology that are generally useful in biological and medical research.
- 2. Demonstrate an understanding of some basic molecular genetic techniques
- 3. Demonstrate nucleic acid extraction, resolution, and detection.

DSC: 21BSC4C4BTP: Molecular Biology Lab

List of Experiments

- 1. Preparation of DNA model
- 2. Estimation of DNA by DPA method
- 3. Estimation of RNA by Orcinol method
- 4. Column chromatography gel filtration (Demo)
- 5. Extraction and partial purification of protein from plant source by Ammonium sulphate precipitation.
- 6. Extraction and partial purification of protein from animal source by organic solvents.
- 7. Protein separation by SDS-Polyacrylamide Gel Electrophoresis (PAGE)
- 8. Charts on- Conjugation, Transformation and Transduction, DNA replication, Types of RNA

References:

- 1. Molecular Cloning, Laboratory Manual, Maniatis, E.F. Fritsch and J. Sambrook (Cold Spring Harber Laboratory, New York).
- 2. Techniques in Molecular Biology (1992), J. Walker and W. Castra (GeomHelns, London).
- 3. Practical Methods in Molecular Biology (1991), R.F. Schecleif and PC. Wensik (SpringerVerlag).
- 4. Sharma AK & A Sharma. 1980. Chromosome techniques: Theory & Practice. Batterworth.

Date

Course Coordinator

Subject Committee Chairperson