

VIJAYANAGARA SRI KRISHNADEVARAYA UNIVERSITY JNANASAGARA CAMPUS, BALLARI-583105

Department of Studies in

Electronics

IV Semester Syllabus

Bachelor of Science

With effect from 2022-23 and onwards

Name of the Department: Electronics

Semester-IV

DSC 4: Digital Electronics and C-Programming

Course Title: Digital Electronics and C-Programming	Course code: : 21BSC4C4ELL
Total Contact Hours: 55	Course Credits: 04
Internal Assessment Marks: 40 marks	Duration of SEE: 02 Hours
Semester End Examination Marks: 60 marks	

Course Outcomes (CO's):

At the end of the course, students will be able to:

- 1. Describe the Digital Electronics and its Fundamentals.
- 2. Distinguish the characteristics of Analog and Digital Electronics.
- 3. Solve the problems using the different theorems and digital methods.
- 4. Describe the performance of Digital Electronics by cominational circuits.
- 5. Write simple C-programs.

DSC 4: Digital Electronics and C-Programming

Unit	Description	Hours
1	Number Systems	11
	Binary, Octal & Hexadecimal systems and their inter conversions.	
	Codes- BCD (8421), Excess- 3 code, Gray code, Binary operations- addition,	
	subtraction, 1' & 2' complementary method of subtraction. Examples.	
	BOOLEAN ALGEBRA: positive, negative logics, Boolean identities. Laws	
	and Theorems of Boolean algebra.	
2	Logic Gates & Logic	11
	Introduction, AND, OR, NOT – Basic gates: construction, working using	
	diodes and transistors. Truth tables, symbols and IC's.	
	Universal gates: NAND & NOR gates truth tables, symbols & Boolean	
	expressions.	
	Combinational gates: XOR & XNOR gates truth tables, symbols & Boolean	
	expressions.	
	theorems	
	Dinony adden Half adden & Eull adden 4 hit Dinony addens	
2	Madula 2. Combinational Logic	11
3	Wodule 5: Combinational Logic	11
	Multiplexers: block diagram, truth table and logic circuit of 4-to-1	
	multiplexer and 16 to-1 multiplexer. The 74150 TTL multiplexer-pin out	
	diagram, truth table explanation	
	Demultiplexer-1-to4, 1-to-16 demultiplexer block diagram, truth table and	

logic diagram and explanation. The 74154demultiplexer-pin out diagram.			
truth table explanation			
Implementation of logic circuits for given Boolean expressions and design.			
Simplifying the logic circuits SOP & POS expressions, K-Map construction			
& simplifications to solve 3 & 4 variable Boolean expressions, don't care			
conditions.			
4 LOGIC family IC's & Flip-flops	11		
RT, DTL & TTL families – characteristics, TTL NAND & NOR gates,			
CMOS series,			
Merits and demerits of TTL & CMOS.			
Flip-flops: Basic RS flipflop (bistable) using transistor.			
Flipflop as a memory cell. RS- NAND & NOR latches, clocked RS flipflop,			
D & T flipflop,			
JK flipflop, master slave flipflop. relaxation oscillator.			
5 'C' PROGRRAMING & STATEMENTS OF 'C' LANGUAGE	11		
Basic computer system- block diagram &function, Introduction to 'C'			
language, characteristics and applications, character set, C- tokens, constants			
and variables, data types, operators- arithmetic, logical, bitwise and special			
operators, Expressions, Basic structure of C programming, compiling and			
executing of			
C programs statement and examples with programs for the following-			
1) if statement			
2) If else statement			
3) nested-if statement			
a) nested-il statement			
H) switch statements:			
5) go-to statement			
Loop control statements:			
6) while statement.			
7) do while statement.			
8) for statement.			
9) nested for statement.			
10) jump statements			
Reference Books:			
1. Modern Digital Electronics – RP Jain			
2. Digital Principles & applications – AP Malvino			
3. Digital fundamentals - Flyod			
4. Digital system –principles & application; Ronald J Tocci			
5. Electronic devices & circuits, Jacob Millman & Halkias			
6. Digital principles & applications ; Malvino&Leach			
7. Computer concept & 'C' programming - P.B.Kotur.			

Name of the Department: Electronics

Semester-IV

DSC 4: Digital Electronics and C-Programming Lab

Course Title: Digital Electronics and C-Programming Lab	Course code: 21BSC4C4ELP	
Total Contact Hours: 56	Course Credits: 02	
Internal Assessment Marks: 25	Duration of SEE: 03 Hours	
Semester End Examination Marks: 25		

Course Outcomes (CO's):

At the end of the course, students will be able to:

- 1. Observe Digital signals and their behaviour.
- 2. Use the instruments like IC's and design Different combinational circuits.
- 3. Design experiments to verify D-Morgan's theorems.
- 4. Design experiments to draw the different Digital circuits and Expressions.

DSC 4: Digital Electronics and C-Programming Lab

List of Experiments:

- 1) Construction of Basic logic gates using diodes and transistor.
- Verification of IC logic gates OR(7432), AND(7408), NOT(7404), NAND (7400), NOR (7402), X-OR (7486).
- 3) Verification of De' Morgan's theorems.
- 4) Realization of basic gates using universal gate -NOR
- 5) Realization of basic gates using universal gate -NAND
- 6) Construction of NAND, NOR latches.
- 7) Construction of RS flip-flop.
- 8) Construction of JK flip-flop.
- 9) Study of Multiplexer and using IC 74LS150.
- 10) Study of Demultiplexer using IC 74LS15.

C- programs:

1) Program to find the Simple interest and Compound interest.

- 2) Program to find the Smallest and largest of three given numbers.
- 3) Program to find the sum of Sine Series.
- 4) Program to find the sum of individual digits of given number.
- 5) Program to check prime number.
- 6) Program to print the Fibonacci Series.
- 7) Program to find the roots of Quadratic equation using switch statement.

Note:

- 1. Minimum of EIGHT experiments must be carried out.
- 2. Experiments may be added as and when required with the approval of BoS.

References:

- 1. Modern Digital Electronics RP Jain
- 2. Digital Principles & applications AP Malvino
- 3. Digital fundamentals Flyod
- 4. Digital system -principles & application; Ronald J Tocci
- 5. Electronic devices & circuits, Jacob Millman & Halkias
- 6. Digital principles & applications ; Malvino & Leach
- 7. Computer concept & 'C' programming P.B.Kotur.