No. of Printed Pages : 2

21BCA2C6DML

B.C.A. II Semester Degree Examination, September/October - 2023 COMPUTER SCIENCE

Discrete Mathematical Structures

(NEP)

Time : 2 Hours			Maximum Marks : 60	
Not	:e : A	Inswer all sections.		
		SECTION - A		
1.	Answer the following sub-questions. Each carries one mark.		10x1=10	
	(a)	Define Disjunction.		
	(b)	What is power set ?		
	(c)	Define Recurrence relation.		
	(d)	What is equivalence relation ?		
	(e)	Define symmetric relation.		
	(f)	Give one example of Divide and Conquer technique.		
	(g)	Draw (4, 3) Graph.		
	(h)	Define Regular Graph.		
	(i)	What is chromatic number ?		
	(j)	Define Square Matrix.		
		SECTION - B		
	Ans	wer any four from the following questions :	4x5=20	
2.	Write the converse, inverse and contrapositive for the following compound proposition. "If $x \in A \cup B$ then $x \in A$ or $x \in B$ "			
3.	Fine	Find the value of 'n', such that		
	$\frac{n}{n-1}$	$\frac{P_4}{P_4} = \frac{5}{3}, n > 4$		
4.	Let	$A = \{1, 2, 3, 4\}$ and relation R is defined on A. Where		

 $R = \{(1,1) (1, 2) (2, 1) (2, 2) (3, 4) (4, 3) (3, 3) (4, 4)\}.$ Verify that 'R' is a equivalence relation.

P.T.O.

21BCA2C6DML

5. Define isomorphism. Show that the following two graphs are isomorphic.

- **6.** Determine the number of possible integers such that $1 \le n \le 100$. Where 'n' is not divisible by 2, 3 or 5.
- 7. Define complete Graph. Show that a complete graph with 'n' vertices K_n has $\frac{1}{2} n(n-1)$ edges.

SECTION - C

Answer any three from the following questions.

3x10=30

- **8.** (a) What are Quantifiers ? List and explain its types.
 - (b) Let $A = \{a, b\}$, $B = \{p, q\}$, $C = \{q, r\}$ find $A \times (B \cup C)$ and $A \times (B \cap C)$.
- **9.** In how many ways can 26 letters of English alphabets be permuted such that the patterns CAR, DOG, PUN, BYTE don't appear ?
- **10.** Prove that $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{1}{6}n(n+1)$ (2n+1) using mathematical induction.
- **11.** For the following graphs find any two possible Open walk, Closed walk, Trial, Circuit (for open walk from V_1 to V_6 and for closed walk from V_1 to V_1)

12. Find the coefficient of x^{15} in $(x-x^2)^{10}$ by using binomial expansion.

- 0 0 0 -

###