21BSC2C2MTL

B.Sc. II Semester Degree Examination, September/October - 2023 MATHEMATICS

Algebra and Calculus - II

(NEP)

Time: 2 Hours Maximum Marks: 60

Note: Answer all Parts.

PART - A

1. Answer all questions.

10x1=10

- (a) Define neighbourhood of a point.
- (b) Define limit point of a set.
- (c) Define centre of a Group.
- (d) If 'a' is a generator of a cyclic group G then prove that a^{-1} is also a generator.
- (e) If u = 3x + 5y, v = 4x 3y then find $\frac{\partial (u, v)}{\partial (x, y)}$.
- (f) Find the degree of the homogeneous function $u = \frac{x^{1/3} y^{1/3}}{x^{1/2} + y^{1/2}}$.
- (g) Show that $\int_{C} \left[(x+y) dx + (x-y) dy \right] = 0 \text{ where } C \text{ is the ellipse}$ $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0.$
- (h) Evaluate: $\int_0^1 \int_0^2 (x+y) dx dy$.
- (i) Write the surface area formula (S) whose projection on yz-plane.
- (j) Evaluate : $\int_0^2 \int_0^2 \int_0^2 dy dx dz$

PART - B

Answer any four of the following.

4x5=20

- 2. The union of a finite number of closed sets is a closed set.
- **3.** State and prove Lagrange's theorem.

- **4.** If $u = \sin^{-1} \left(\frac{x^3 y^3}{x y} \right)$ show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2 \tan u$
- **5.** Evaluate $\iint_C [(x+y)dx + (y-x)dy]$ along the parabola $y^2 = x$ from (1, 1) to (4, 2).
- **6.** Evaluate : $\int_0^1 \int_x^{\sqrt{x}} xy \, dy \, dx$
- 7. Evaluate: $\iint_A xy \, dx \, dy$, where A is the region bounded by the co-ordinate axes and the line x+y=1.

PART - C

Answer any three of the following questions.

3x10=30

- **8.** (a) Find the supremum and infimum of $S = \{2, 4, 6, 10, 12\}$.
 - (b) State and prove Archimidean property of R.
- **9.** (a) If H and K are any two subgroups of a group G then prove that HK is a subgroup of G iff HK=KH.
 - (b) Show that every factor group of a cyclic group is cyclic.
- **10.** (a) If u = f(x, y) be a homogeneous function of degree n^{-1} then prove that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 x}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = n(n-1)u.$
 - (b) Find $\frac{dz}{dt}$, if $z=x^2+y^2$, where $x=e^t cost$, $y=e^t sint$.
- 11. (a) Show that $\int_C y^2 dx + 2xy dy$ is independent of the path joining (0, 1) and (1, 3) and hence evaluate.

- o O o -

- (b) Change the order of integration and evaluate $\int_0^\infty \int_0^\infty \frac{e^{-y}}{y} dy dx$.
- **12.** (a) Evaluate : $\int_0^a \int_0^{\sqrt{a^2 x^2}} \int_0^{\sqrt{a^2 x^2 y^2}} \frac{dx dy dz}{\sqrt{a^2 x^2 y^2 z^2}}$
 - (b) Find the volume of the sphere $x^2 + y^2 + z^2 = 2^2$.

