No. of Printed Pages : 2

21BSC2C2PHL

B.Sc. II Semester (NEP) Degree Examination, September/October - 2022 PHYSICS

2: Electricity and Magnetism

Time : 3 Hours

Maximum Marks : 60

Note : Answer all the Sections.

SECTION - A

- 1. Answer the following sub-questions, each sub-question carry one mark. 10x1=10
 - (a) State Coulomb's Law in Electrostatics.
 - (b) What is point charge ?
 - (c) State Kirchhoff's voltage law.
 - (d) Define Q-factor.
 - (e) State Ampere's circuit law.
 - (f) What is solenoid ?
 - (g) State Gauss Divergence Theorem.
 - (h) What is Electromagnetic Wave ?
 - (i) Define magnetic moment.
 - (j) What is Hysteresis loop ?

SECTION - B

	Answer any four of the following. Each carry five marks.	4x5=20
2.	What is Dipole ? Derive expression for potential due to Dipole.	5
3.	State and explain maximum Power Transfer Theorem.	5
4.	Derive expression for magnetic field due to steady current in a long straight w	ire. 5
5.	Show that $\nabla \times (\nabla \phi) = 0$.	5
6.	With neat diagram explain Hertz experiment for production of Electromagne	etic 5
	waves.	
7.	With neat diagram explain Hysteresis Curve and its physical significance.	5

21BSC2C2PHL

2

SECTION - C

Answer any three of the following questions. Each carry ten marks. 3x10=30
8. Using Gauss law Deduce Electric fields due to uniformly charged sphere and 10 uniformly charged hollow cylinder.

- 9. (a) Derive expression for current in case of RC series AC circuit using j notation. 7+3
 (b) In LCR parallel circuit Resistance of 100 ohm and Inductance of 0.25 mHz. Find the band width of the system.
- 10. (a) State and Derive Faraday's laws of Induction.
 (b) Derive expression for Energy stored in a magnetic field.
- **11.** (a) Show that $\nabla \times (\nabla \times A) = \nabla (\nabla A) \nabla^2 A$ where $A = A_1 \stackrel{\wedge}{i} + A_2 \stackrel{\vee}{j} + A_3 \stackrel{\wedge}{K}$. **7+3**
 - (b) Find the speed of Electromagnetic waves in free space.
- 12. (a) Derive the relation between magnetic moment and angular momentum. 5+5
 (b) Give the necessary Langevin's theory of paramagnetism.

- 0 0 0 -

###