

M.A. II Semester Degree Examination, September/October - 2022 ECONOMICS

21ECO2C8L : Mathematics for Economics

Tim	Time : 3 HoursMaximum Marks : 7		
Not		Answer any five of the following with question number 1 is compulsory . Each question carries equal marks.	
1.	(a)	What is a Relation ? Explain different types of Relations.	5
	(b)	Find the Domain and Range of the following Relations :	4
		$R_1 = \left\{ (1, 1), \left(2, \frac{1}{2}\right), \left(3, \frac{1}{3}\right), \left(4, \frac{1}{4}\right) \right\}$	
		$R_2 = \{(1, 1), (4, 2), (9, 3), (16, 4)\}$	
	(c)	Let $A = \{1, 2, 3, 4\}$ $B = \{2, 4, 6, 8\}$, $C = \{3, 4, 5, 6\}$ Show that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	5
2.	Giv	en $A = \begin{vmatrix} 8 & 1 & -2 \\ -9 & 9 & 9 \\ 6 & -3 & 9 \end{vmatrix} B = \begin{vmatrix} 1 & 2 & -3 \\ 5 & 6 & -4 \\ 7 & -9 & 8 \end{vmatrix} C = \begin{vmatrix} 4 & -3 & 1 \\ 6 & 2 & -1 \\ 0 & 4 & 3 \end{vmatrix}$ show that	14
	A(B	+C) = AB + AC.	
3.	Solv	ve the following equations by Cramer's Rule (or) by matrix inverse method.	14
	$2x_1 + 4x_2 - x_3 = 15$		
	x_1	$-3x_2 + 2x_3 = -5$	
	6 <i>x</i> ₁	$+5x_2 + x_3 = 28$	
4.	(a)	List out rules of differentiation with suitable examples.	7
	(b)	Find the extreme values of the function :	7

- $y = 15x^3 9x^2 8x$
- 5. If the demand function is $P = 25 3x 3x^2$ and the demand x_0 is 2, what is consumer 14 surplus ?

P.T.O.

6. (a) Let
$$K = \begin{bmatrix} 3 & 7 \\ 4 & 8 \\ 2 & 1 \end{bmatrix} L = \begin{bmatrix} 2 & 5 \\ 6 & -3 \\ 4 & 11 \end{bmatrix}$$
, find $K-L$ and $L-K$. **7**

(b) Let
$$M = \begin{bmatrix} 4 & 6 & 2 \\ 1 & 7 & 4 \\ 3 & 9 & 2 \end{bmatrix}$$
 and $N = \begin{bmatrix} 8 \\ 7 \\ 1 \end{bmatrix}$, find MN and NM. **7**

7. Describe the steps involved in constrained optimisation of a function.148. (a) Given total cost
$$C = Q^3 - 12Q^2 + 60Q + 120$$
, find marginal cost.5(b) Find $\frac{dy}{dx}$ when $y = (8x^3 - 5)^9$.5

(c) Find
$$\int x^3 dx$$
.

- o O o -

#