No. of Printed Pages : 2

Sl. No.

21MAT1C1L

M.Sc. I Semester Degree Examination, April/May - 2023 MATHEMATICS

Algebra

 (b) State and prove Sylow's 1st Theorem. (c) Give an example of non-abelian group G and proper normal subgroup N of G such that G/N is abelian. 3. (a) Let G be a group C(G) is its centre and I(G) be the group of inner Automorphism then show that G/C(G) ≅ I(G). (b) State and prove Cauchy's theorem of abelian group. (c) Show that there are only two groups of order 6 one is cyclic and other is isomorphic to S₃. 4. (a) Show that H is maximal subgroup of G if and only if G/H is simple. 6+4+4 (b) Show that S₄ is solvable group. (c) If O(G) = 56, then prove that G has 1 or 8 sylow 7 subgroup(s). 				
 (b) If G=<a> is a cyclic group generated by an element a∈G. Then prove the following : (i) If O(a) is zero then G is isomorphic additive group of integers. (ii) If O(a) is n>O, then G is isomorphic to residue class modulo n. (c) Express the following permutation as a product of disjoint cycles. (1 2 3) (4 5) (1 3 4 5) 2. (a) State and prove Fundamental theorem of group isomorphism. 5+5+4 (b) State and prove Sylow's 1st Theorem. (c) Give an example of non-abelian group G and proper normal subgroup N of G such that G/N is abelian. 3. (a) Let G be a group C(G) is its centre and I(G) be the group of inner Automorphism then show that G/C(G) ≅ I(G). (b) State and prove Cauchy's theorem of abelian group. (c) Show that there are only two groups of order 6 one is cyclic and other is isomorphic to S₃. 4. (a) Show that H is maximal subgroup of G if and only if G/H is simple. 6+4+4 (b) Show that S₄ is solvable group. (c) If O(G) = 56, then prove that G has 1 or 8 sylow 7 subgroup(s). 	NOU	<i>:e</i> :	Answer any five questions with Q.1 computsory. All questions carries equal	marks.
 (b) If G= <a> is a cyclic group generated by an element a∈G. Then prove the following : (i) If O(a) is zero then G is isomorphic additive group of integers. (ii) If O(a) is n>O, then G is isomorphic to residue class modulo n. (c) Express the following permutation as a product of disjoint cycles. (1 2 3) (4 5) (1 3 4 5) 2. (a) State and prove Fundamental theorem of group isomorphism. 5+5+4 (b) State and prove Sylow's 1st Theorem. (c) Give an example of non-abelian group G and proper normal subgroup N of G such that G/N is abelian. 3. (a) Let G be a group C(G) is its centre and I(G) be the group of inner Automorphism then show that G/C(G) ≅ I(G). (b) State and prove Cauchy's theorem of abelian group. (c) Show that there are only two groups of order 6 one is cyclic and other is isomorphic to S₃. 4. (a) Show that H is maximal subgroup of G if and only if G/H is simple. 6+4+4 (b) Show that S₄ is solvable group. (c) If O(G) = 56, then prove that G has 1 or 8 sylow 7 subgroup(s). 	-			
 (ii) If O(a) is n>O, then G is isomorphic to residue class modulo n. (c) Express the following permutation as a product of disjoint cycles. (1 2 3) (4 5) (1 3 4 5) 2. (a) State and prove Fundamental theorem of group isomorphism. 5+5+4 (b) State and prove Sylow's 1st Theorem. (c) Give an example of non-abelian group G and proper normal subgroup N of G such that G/N is abelian. 3. (a) Let G be a group C(G) is its centre and I(G) be the group of inner Automorphism then show that G/C(G) ≡ I(G). (b) State and prove Cauchy's theorem of abelian group. (c) Show that there are only two groups of order 6 one is cyclic and other is isomorphic to S₃. 4. (a) Show that H is maximal subgroup of G if and only if G/H is simple. 6+4+4 (b) Show that S₄ is solvable group. (c) If O(G) = 56, then prove that G has 1 or 8 sylow 7 subgroup(s). 	1.	. ,	If $G = \langle a \rangle$ is a cyclic group generated by an element $a \in G$. Then prove th	
 (c) Express the following permutation as a product of disjoint cycles. (1 2 3) (4 5) (1 3 4 5) 2. (a) State and prove Fundamental theorem of group isomorphism. 5+5+4 (b) State and prove Sylow's 1st Theorem. (c) Give an example of non-abelian group G and proper normal subgroup N of G such that G/N is abelian. 3. (a) Let G be a group C(G) is its centre and I(G) be the group of inner Automorphism then show that G/C(G) ≅ I(G). (b) State and prove Cauchy's theorem of abelian group. (c) Show that there are only two groups of order 6 one is cyclic and other is isomorphic to S₃. 4. (a) Show that H is maximal subgroup of G if and only if G/H is simple. 6+4+4 (b) Show that S₄ is solvable group. (c) If O(G) = 56, then prove that G has 1 or 8 sylow 7 subgroup(s). 			(i) If O(a) is zero then G is isomorphic additive group of integers.	
 (1 2 3) (4 5) (1 3 4 5) 2. (a) State and prove Fundamental theorem of group isomorphism. 5+5+4 (b) State and prove Sylow's 1st Theorem. (c) Give an example of non-abelian group G and proper normal subgroup N of G such that G/N is abelian. 3. (a) Let G be a group C(G) is its centre and I(G) be the group of inner Automorphism then show that G/C(G) ≡ I(G). 5+5+4 (b) State and prove Cauchy's theorem of abelian group. (c) Show that there are only two groups of order 6 one is cyclic and other is isomorphic to S₃. 4. (a) Show that H is maximal subgroup of G if and only if G/H is simple. 6+4+4 (b) Show that S₄ is solvable group. (c) If O(G)=56, then prove that G has 1 or 8 sylow 7 subgroup(s). 			(ii) If O(a) is n>O, then G is isomorphic to residue class modulo n.	
 (b) State and prove Sylow's 1st Theorem. (c) Give an example of non-abelian group G and proper normal subgroup N of G such that G/N is abelian. 3. (a) Let G be a group C(G) is its centre and I(G) be the group of inner Automorphism then show that G/C(G) ≅ I(G). (b) State and prove Cauchy's theorem of abelian group. (c) Show that there are only two groups of order 6 one is cyclic and other is isomorphic to S₃. 4. (a) Show that H is maximal subgroup of G if and only if G/H is simple. 6+4+4 (b) Show that S₄ is solvable group. (c) If O(G) = 56, then prove that G has 1 or 8 sylow 7 subgroup(s). 		(c)		
 (c) Give an example of non-abelian group G and proper normal subgroup N of G such that G/N is abelian. 3. (a) Let G be a group C(G) is its centre and I(G) be the group of inner Automorphism then show that G/C(G) ≡ I(G). (b) State and prove Cauchy's theorem of abelian group. (c) Show that there are only two groups of order 6 one is cyclic and other is isomorphic to S₃. 4. (a) Show that H is maximal subgroup of G if and only if G/H is simple. 6+4+4 (b) Show that S₄ is solvable group. (c) If O(G) = 56, then prove that G has 1 or 8 sylow 7 subgroup(s). 	2.	(a)	State and prove Fundamental theorem of group isomorphism.	5+5+4
 such that G/N is abelian. 3. (a) Let G be a group C(G) is its centre and I(G) be the group of inner Automorphism then show that G/C(G) ≅ I(G). (b) State and prove Cauchy's theorem of abelian group. (c) Show that there are only two groups of order 6 one is cyclic and other is isomorphic to S₃. 4. (a) Show that H is maximal subgroup of G if and only if G/H is simple. 6+4+4 (b) Show that S₄ is solvable group. (c) If O(G) = 56, then prove that G has 1 or 8 sylow 7 subgroup(s). 		(b)	State and prove Sylow's 1 st Theorem.	
 3. (a) Let G be a group C(G) is its centre and I(G) be the group of inner Automorphism then show that G/C(G) ≈ I(G). (b) State and prove Cauchy's theorem of abelian group. (c) Show that there are only two groups of order 6 one is cyclic and other is isomorphic to S₃. 4. (a) Show that H is maximal subgroup of G if and only if G/H is simple. 6+4+4 (b) Show that S₄ is solvable group. (c) If O(G) = 56, then prove that G has 1 or 8 sylow 7 subgroup(s). 		(c)	Give an example of non-abelian group G and proper normal subgroup N of G	£
 then show that G/C(G) = I(G). (b) State and prove Cauchy's theorem of abelian group. (c) Show that there are only two groups of order 6 one is cyclic and other is isomorphic to S₃. 4. (a) Show that H is maximal subgroup of G if and only if G/H is simple. 6+4+4 (b) Show that S₄ is solvable group. (c) If O(G) = 56, then prove that G has 1 or 8 sylow 7 subgroup(s). 			such that $\frac{G}{N}$ is abelian.	
 then show that ^G/_{C(G)} ≅ I(G). (b) State and prove Cauchy's theorem of abelian group. (c) Show that there are only two groups of order 6 one is cyclic and other is isomorphic to S₃. 4. (a) Show that H is maximal subgroup of G if and only if ^G/_H is simple. 6+4+4 (b) Show that S₄ is solvable group. (c) If O(G) = 56, then prove that G has 1 or 8 sylow 7 subgroup(s). 	3.	(a)		
 (c) Show that there are only two groups of order 6 one is cyclic and other is isomorphic to S₃. 4. (a) Show that H is maximal subgroup of G if and only if G/H is simple. 6+4+4 (b) Show that S₄ is solvable group. (c) If O(G) = 56, then prove that G has 1 or 8 sylow 7 subgroup(s). 			then show that $\frac{G}{C(G)} \cong I(G)$.	5+5+4
 4. (a) Show that H is maximal subgroup of G if and only if G/H is simple. 6+4+4 (b) Show that S₄ is solvable group. (c) If O(G) = 56, then prove that G has 1 or 8 sylow 7 subgroup(s). 		(b)	State and prove Cauchy's theorem of abelian group.	
 (b) Show that S₄ is solvable group. (c) If O(G) = 56, then prove that G has 1 or 8 sylow 7 subgroup(s). 		(c)		S
(c) If $O(G) = 56$, then prove that G has 1 or 8 sylow 7 subgroup(s).	4.	(a)	Show that H is maximal subgroup of G if and only if $\frac{G}{H}$ is simple.	б+4+4
(c) If $O(G) = 56$, then prove that G has 1 or 8 sylow 7 subgroup(s).		(b)	Show that S_4 is solvable group.	
P.T.O				Р.Т.О.

21MAT1C1L

- 5. (a) Show that a non-zero commutative ring with unity is a field if it has no-proper ideal.
 6+6+2
 - (b) If $M_2(R)$, the set of all matrices of 2×2 order over R is non-commutative ring with unity under addition and multiplication of matrices. Prove that $M_2(R)$ is a regular ring.
 - (c) Define Sylow's p-subgroup and give an example.
- **6.** (a) Let G be a group $a \in G$, define a mapping $\phi_a : G \to G$ by $\phi_a(g) = a^{-1}$ ga then show that ϕ_a is automorphism. **6+4+4**
 - (b) Show that the ring of Gaussian integer z[i] is an Euclidean domain.

(c) Prove that
$$z\sqrt{2} = \left\{a + \frac{\sqrt{2}b}{a}, b \in z\right\}$$
 is a Euclidean domain.

- **7.** (a) Let R be an integral domain then show that \exists an embedding of R into a field.
 - (b) Prove that every ideal in a Euclidean domain is principal ideal. **6+4+4**
 - (c) If R is a system with 1. Satisfying all axiom of a ring except possible a+b=b+a for a, $b\in R$, then show that R is a ring.
- **8.** (a) Define unique Factorization Domain with example. **4+5+5**
 - (b) State and prove Gauss Lemma.
 - (c) Show that $f(x) = 8x^3 2x^2 5x + 10$ is irreducible over Q.

- 0 0 0 -

####