No. of Printed Pages : 2

Sl. No.

21MAT1C2L

M.Sc. I Semester Degree Examination, April/May - 2023 MATHEMATICS

Real Analysis

Time : 3 HoursMaximum Marks : 70		
Not	e :	Answer any five questions, with Q.No. (1) is compulsory . Each question carries 14 marks.
1.	(a) (b) (c)	Prove-or-disprove : Q is countable set.5+5+4Prove that a non-empty subset of R bounded below has infimum in R .State and prove Archimedean property of Real numbers.
2.	(a) (b) (c)	Compute the following for the subsets of R under Euclidean topology on R (i) interior of N (ii) derived set of Z $5+5+4$ (iii) closure of (0, 1) (iv) boundary of (0, 2) (v) exterior [2, 3] Define compact set. Prove that every compact set in R is bounded. Prove-or-disprove the following statements : (i) Infinite union of closed sets is closed. (ii) $\overline{(A \cap B)} = \overline{A} \cap \overline{B}$.
3.	(a) (b)	Let $A \subseteq \mathbf{R}$, let $f: A \to \mathbf{R}$ and let e be a cluster point of A. If $\lim_{x \to e} f > 0$, then prove that there exists a neighbourhood $V_{\delta}(e)$ such that $f(x) > 0$, for all $x \in A \cap V_{\delta}(e)$, $x \neq e$. State and prove Bolzano's Intermediate value theorem. Classify discontinuities for the following functions at mentioned points :
4.	(c) (a)	(i) $f(x) = \begin{cases} \sin\left(\frac{1}{x}\right) & x \neq 0 \\ 3 & x = 0 \end{cases}$ (ii) Signum function at $x=0$. Prove or disprove the following statement : $5+5+4$ let $\{f_n\}$ be a sequence of integrable functions and $f_n \to f$ pointwise on [0, 1].
	(b)	then $\int_0^1 f_n dt = \int_0^1 f(t) dt$. State and prove Cauchy's criteria for uniform convergence of series of functions.
		P.T.O.

21MAT1C2L

(c) Test the uniform convergence for the following sequence and series of functions :

(i)
$$f_n(x) = \frac{1}{x + n^2}, x \in [0, 10]$$

+

(ii)
$$f_{n}(x) = x^{n}, x \in [0, 1]$$

(iii) $\sum_{n=1}^{\infty} \frac{2^{n} x^{2n-1}}{1+x^{2n}}, x \in \left[-\frac{1}{2}, \frac{1}{2}\right]$

5. (a) If $\{f_n\}$ converges uniformly to f on [a, b], and each function f_n is integrable, then prove that f is integrable on [a, b] and $\lim_{n \to \infty} \int_a^b f_n(t) dt = \int_a^b f(t) dt$. 7+7

- (b) Let $\sum_{n=1}^{\infty} f_n$ be a series of differentiable functions on [a, b] and such that it converges at least at one point $x_0 \epsilon$ [a, b]. If the series of differentials Σf_n^1 converges uniformly to G on [a, b], then prove the following :
 - (i) Σf_n converges uniformly on [a, b] to f, and

(ii)
$$f'(x) = G(x), \forall x \in [a, b]$$

/г

6. Discuss the compactness and connectedness for the following subsets of R. (a) Under Euclidean topology on R.
8+6

(i)
$$\sin\left(\left[0,\frac{\pi}{2}\right]\right)$$
 (ii) $\sin(\left[0, 6\pi\right)\right]$ (iii) **N** (iv) Q

- (b) Define connectedness. Prove that continuous image of connected set is connected.
- 7. (a) State and prove Weierstrass-M*test. (b) Let $\{f_n\}$ be a sequence of functions, such that $f_n \to f$ pointwise on [a, b] and let $M_n = \sup_{x \in [a, b]} |f_n(x) - f(x)|$. Then prove that $f_n \to f$ uniformly on [a, b] if and only if $M_n \to 0$ as $n \to \infty$.
- 8. (a) State and prove Cantor's theorem.
 - (b) Prove that uniform continuous function is continuous. Discuss the converse.(c) Define Monotone function. Prove that monotone function have no discontinuity
 - of second kind.

- 0 0 0 -

5+5+4