No. of Printed Pages : 2

Sl. No.

21MAT1C3L

M.Sc. I Semester Degree Examination, April/May - 2023 MATHEMATICS

Differential Equations

Time : 3 Hours Maximum Marks : 70			70
Not	Note : Answer any five questions with Question Number 1 is compulsory . All questions carries equal marks.		
1.	(a)	State and prove Liouville's theorem.	7
	(b)	Find the Wronskian of the independent solution $y^{V} - y^{IV} - y^{I} + y = 0$ in [0,1]	7
2.	(a)	Solve by the method of undetermined coefficients, $y'' + 2y' + y = 2\cos x - 3x + 2 + 3e^x$.	5
	(b)	Define :	5
		(i) Adjoint differential equation	
		(ii) Self adjoint differential equation	
		(iii) Normalized differential equation	
		(iv) The wronskian	
		(v) Linear dependence and independence	
	(c)	Is Hermite differential equation is self adjoint? If not transform it as an	4
		equivalent self-adjoint form.	
3.	(a)	Define oscillatory and non-oscillatory differential equations with an example.	5
	(b)	State and prove Sturm-comparision theorem.	4
	(c)	Show that the differential equation $y'' + \frac{k}{x^2} y = 0$ (- $\infty \le x < \infty$) where k is	5
		constant and x>0 is oscillatory, if $k > \frac{1}{4}$ and non-oscillatory if $k \le \frac{1}{4}$.	
		P.1	`.O .

21MAT1C3L

4. (a) Find the general solution of $x^2y'' + 9xy' + 12y = 0$ by finding the solution of its **5** adjoint equation.

2

- (b) Define the following :
 - (i) Orthogonality.
 - (ii) Orthogonal set of functions.
 - (iii) Orthonormal set of functions.
 - (iv) Orthogonality w.r.t. a weight function.
 - (v) Orthogonal set of functions with respect to a weight function.
- (c) Show that the set of functions.
 - (i) $\left\{ \sin \frac{n\pi x}{c} \right\}$ n=1, 2, 3,..... is orthogonal on the interval (0,c).
 - (ii) $\{\cos n \} n = 0, 1, 2, 3, \dots$ is orthogonal on the interval $-\pi \le x \le \pi$. Hence find the orthonormal set.

5. (a) If a power series $\sum a_n x^n$ converges for $x = x_0$, then prove that :

- (i) It is absolutely convergent in the interval $|x| < |x_0|$
- (ii) It is uniformly convergent in the interval $|x| \le |x_1|$, where $|x_1| < |x_0|$
- (b) Find the power series solution of the equation $y'' + xy' + x^2y = 0$ about origin. 5
- (c) Find the solution near x=0 of $x^2y'' + (x+x^2)y' + (x-9)y=0$, by Frobenius 5 method.
- 6. (a) Find the fundamental matrix solution of the following system of equations : 7 $\frac{dx}{dt} = 4x - y; \frac{dy}{dt} = x + 2y.$
 - (b) Determine the critical points of the system $\frac{dx}{dt} = x+y$; $\frac{dy}{dt} = 3x-y$. 7

Discuss the nature and stability of the critical point and obtain the general solution of the system.

- 7. (a) Find the Eigen value and Eigen function of y" +λy=0; y(0) = y(π) = 0.
 7 (b) Solve by the method of variation of parameters x²y" 2y = x³ and y₁ = x² is a solution of homogeneous equation.
- **8.** (a) Solve the Bessel's equation near zero xy'' + y' + xy = 0 in series by Frobenius **5** method.
 - (b) Apply Liapunor direct method to determine the stability of the critical point 5 (0, 0) of the following system.
 - (i) $\frac{\mathrm{d}x}{\mathrm{d}t} = -y + x^3; \ \frac{\mathrm{d}y}{\mathrm{d}t} = x + y^3$ (ii) $\frac{\mathrm{d}x}{\mathrm{d}t} = y - 2x^3; \ \frac{\mathrm{d}y}{\mathrm{d}t} = -2x - 3y^5$
 - (c) State and prove Greens formula.

4

L

5

4

4