No. of Printed Pages : 2

Sl. No.

21MAT1C5L

M.Sc. I Semester Degree Examination, April/May - 2023 MATHEMATICS

Topology

Time : 3 Hours

Maximum Marks: 70

- *Note :* Answer **any five** questions with question **No.1 Compulsory. All** questions carry **equal** marks.
- 1. (a) Let (X, d) be a metric space and let $\langle F_n \rangle$ be a sequence of non-empty closed subsets of X such that $\delta(F_n) \to 0$ as $n \to \infty$. Then show that X is complete if

and only if $\bigcap_{n=1}^{\infty} F_n$ consists of exactly one point.

- (b) Show that closed open interval [a, b) is neither closed nor open for the usual metric on R. (10+4)
- **2.** (a) If (X, τ) is a topological space and $A \subset x$ then prove the following :
 - (i) $(X A)^\circ = (X \overline{A})$
 - (ii) $(X A^\circ) = (\overline{X A})$
 - (iii) $b(A^{\circ}) \subset b(A)$
 - (iv) $\overline{\mathbf{A}} = \mathbf{A}^{\circ} \cup \mathbf{b}$ (A)
 - (b) Find the interior, closure, boundary set and derived set of the following subsets of R relative to usual topology.
 - (i) (0, 1)
 - (ii) Q, the set of irrational numbers
 - (iii) N, the set of all natural numbers
- **3.** (a) Let X and Y be two topological spaces then show that a map $f: X \to Y$ is continuous if and only if for every closed set $F \subset y$, f^{-1} (F) is closed set in X.
 - (b) Give an example to show that every open cover of second axiom space may not reducible to a countable subcover. (7+7)

P.T.O.

(8+6)

21MAT1C5L

- 4. State and prove Urysohn's lemma.
- 5. (a) If (X, τ) is a topological space and A is a non-empty subset of X then show that A is disconnected if and only if A is the union of two non-empty separated sets.
 - (b) Show that a topological X is compact if and only if every collection of closed subsets of X with the finite intersection property is fixed. (7+7)
- **6.** (a) let (X, τ) be a topological space and $A \subset X$ then prove that $A \cup D(A)$ is closed and $\overline{A} = A \cup D(A)$.
 - (b) Define open map. Let X and Y be two topological spaces, then show that a map $f: X \to Y$ is an open map if and only if for every $A \subset X$, $f(A^\circ) \subset (f(A))^\circ$. (7+7)
- **7.** (a) Let (X, τ) be a T₁-space and A $\subset X$. If a point $x \in X$ is a cluster point of A then show that every neighbourhood of x contains infinitely many points of A.
 - (b) Prove that continuous image of a connected space is connected set. (7+7)
- **8.** (a) Show that in a topological space (X, τ) arbitrary intersection of closed sets is closed and finite union of closed sets is closed.
 - (b) Show that the topological space (R, U) and (R, I) are not homeomorphic, where U and I are usual topology and indiscrete topology on R.
 - (c) Prove the following :
 - (i) Every cofinite space is a T_1 space.
 - (ii) Every T_4 space is a T_3 space.

- o 0 o -

(14)

2

(5+5+4)