

M.Sc. II Semester Degree Examination, September/October - 2022 MATHEMATICS

21MAT2C6L : DSC 6 : Linear Algebra

Time : 3 Hours Maximum Marks : 70 Note : Answer any five of the following questions with Question No.1 is Compulsory, each question carries equal marks.		
2.	(a) (b)	Let V be n-dimensional vector space over the field F. Then show that V is isomorphic to F^n . 5+5+4 Let dim U=m and dim V=n over the field F. Let B and B' be two ordered bases for U and V respectively. Let T:U \rightarrow V be any linear transformation. If $\alpha \in U$, then prove the following.
		$[T(\alpha)]_{B'} = [T]_B^{B'}[\alpha]_B$
	(c)	Let T: $\mathbf{R}^2 \rightarrow \mathbf{R}^2$ be defined by T(x, y) = $(2x, \frac{y}{2})$. Show that T is a linear and find
		its matrix with respect to ordered basis $\{(1, 0), (0, 1)\}$.
3.	(a)	Let $f: V \rightarrow F$ be a linear functional. If V is finite dimensional, then prove that 7+7 nullity(f) = dim(V) - 1.
	(b)	Let V be a finite-dimensional vector space over the field F. For each vector α in V define $L_{\alpha}(f) = f(\alpha)$, $f \in V^*$. Then prove that mapping $\alpha \rightarrow L_{\alpha}$ is an isomorphism of V onto V ^{**} .
4.	(a)	For $\alpha = (x_1, x_2, \dots, x_n)$, $\beta = (y_1, y_2, \dots, y_n)$ in \mathbf{C}^n . Define $\langle \alpha, \beta \rangle = \sum_{i=1}^n x_i \overline{y_i}$.
	(b)	Show that <, > is an inner product. Prove that an orthogonal set of non-zero vectors is linearly independent.
	(c)	Discuss the converse. Find the orthonormal basis for the subspace spanned by the vectors : $(3, 0, 4)$, $(-1, 0, 7)$ and $(2, 9, 11)$.

P.T.O.

76811

- **5.** (a) Define eigen value and eigen vector of a linear transformation. Show that eigen vectors corresponding to distinct eigen values are linearly independent.
 - (b) Verify the Cayley-Hamilton theorem for the following matrix : 5+5+4
 - $\begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix}$
 - (c) Check the diagonalizability of the matrix :
 - $\begin{pmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{pmatrix}$
- **6.** (a) Find the rank and nullity of the matrix :
 - $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 3 & 4 \\ 0 & 0 & 0 & 3 \end{pmatrix}$
 - (b) Find the basis for the range space of the matrix :
 - $\begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix}$
 - (c) Define hyper space and give example.
- 7. (a) Let W be the subspace of an inner product V spanned by an orthonormal set 7+7 $\{\alpha_1, \alpha_2, ..., \alpha_n\}$. Let $\beta \in V$, then prove the following

$$\alpha = \sum_{k} \frac{\langle \beta, \alpha_k \rangle}{||\alpha_k||^2} \cdot \alpha_k$$

is the (unique) best approximation to β by vectors in W.

- (b) Determine all possible Jordan Canonical forms for a linear operator $T: V \rightarrow V$, whose characteristic polynomial is $(x-2)^3(x-5)^2$.
- **8.** (a) State and prove Bessel's inequality.

(b) Solve the system of equations : $\frac{dx}{dt} = 3x - 10y$

$$\frac{\mathrm{d}y}{\mathrm{d}t} = x - 4y$$

- o 0 o -

5+5+4

7+7