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M.Sc. II Semester Degree Examination, October - 2023

MATHEMATICS

 Measure Theory and Integration

NEP

Time : 3 Hours Maximum Marks : 70

Note : Answer any five questions with question no.1 Compulsory.

1. (a) If {An} is a countable family of subsets of R, then show that
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(b) Prove or disprove : The outer measure of an interval is equal to its length.

(c) Show that the Cantor’s set is measurable and its measure is zero. 4

2. (a) Prove the equivalence of following definitions of measurable function. 5

(i) E [f>a] (ii) E [f/a] (iii) E [f<a] (iv) E [f£a]

(b) Show that : A continuous function defined over a measurable set E is

measurable.

(c) Define equivalent functions.  Also prove that if one of the equivalent functions

is measurable then another is measurable.

3 (a) Prove that a Riemann integrable function defined on [a, b] is measurable.

Discuss the converse.

(b) If f is a bounded function in L[a, b] and c e R then show that cf e L[a, b] and
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(c) Let φ and ψ be simple functions which vanish outside a set E of finite measure

then show that for a, b e R, ( )∫ ∫ ∫φ+ ψ = φ+ ψa b a b

4. (a) State and prove that Lebesgue monotonic convergence theorem. 5

(b) Prove or disprove : Every absolutely continuous function f defined on [a, b] is

of bounded variation.

(c) Verify the result of bounded convergence theorem for the function
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5. (a) State and prove that Cauchy-Schwarz’ inequality. 6

(b) The space (L
p
, d), p > 1 is a metric space. 4

(c) Using Fubini’s theorem, verify,
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6. (a) Let f be a measurable function defined over a measurable set E and c e R

then prove that functions cf, f+c, |f|, f 
2 are measurable.

(b) Let f be bounded real valued measurable function defined over a measurable

set E of finite measure such that a £ f (x) £ b then prove a.m (E) 

E

f b.m (E)∫� � 

(c) If 0∫ =

A

( )df x x for every measurable subset A of a measurable set E then

show that f(x)=0 a.e on E.

7. (a) Prove or disprove : Every absolutely continuous function is an indefinite

integral of its own derivate.

(b) Let
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Then evaluate L−integral of f defined on E=[0, 1].

(c) If f ∈L
p [a, b] and g £ f then show that g ∈L

p [a, b], where p>1. 4

8. (a) Show that : The set of all irrational numbers in [0, 1] is measurable and has

measure 1.

(b) If f and g are measurable function defined over a measurable set E then

prove that f c g and f 1 g are measurable over E.

(c) Let <En> be a monotonically increasing sequence of measurable sets of
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