

M.Sc. II Semester Degree Examination, September/October - 2022 **MATHEMATICS**

21MAT2C7L-DSC 7 : Measure Theory and Integration

Time : 3 Hours

Maximum Marks: 70

1. (a	a)		
	-7	If A is an algebra on X and $\{A_n\}$ is a sequence of elements in A, then prove	5
		that there exists a disjoint sequence $\{B_n\}$ in A such that $\bigcup_{i=1}^{\infty} A_i = \bigcup_{k=1}^{\infty} B_k$ with	
		$A_i \subset B_i$.	
(t	b)	Prove - or - disprove : The outer measure of an interval is its length.	5
(c	c)	If E_1 and E_2 are measurable sets, then prove the following: m $(E_1 \cap E_2) = m (E_1) + m (E_2) - m (E_1 \cup E_2)$.	4
2. (a	a)	Let f and g be measurable functions on E, and c be any constant. Then show that the following functions are measurable. (i) $f + c$ (ii) $f + g$ (iii) f^4 (iv) $f \cdot g$	5
(b	b)	(i) $f + c$ (ii) $f + g$ (iii) f^4 (iv) $f.g$ Let $\{f_n\}$ be a sequence of measurable functions on a measurable set E. Prove that the following functions are measurable.	5
(c		(i) max { f_1, f_2, \dots, f_n } (ii) $\inf_n f_n$ (iii) $\overline{\lim} f_n$	
	c)	Define equivalent functions. Also prove that if one of the equivalent functions is measurable then another is also measurable.	4
3. (a	a)	Let $f: E \to \mathbf{R}$ be a simple function. Then prove the following :	5
		$\alpha \int_{-E} f(x) dx = \int_{E} f = \alpha \int_{E}^{-} f(x) dx.$	
(b) (c)	b)	Prove that a Riemann integrable function defined on [a, b] is measurable. Discuss the converse.	5
	c)	Let f and g be two bounded and equivalent functions on E with m (E) < ∞ . Then prove the following :	4
		$\int_{\mathbf{E}} f = \int_{\mathbf{E}} \mathbf{g}$	
		Discuss the converse.	
		Р.Т	

76812

- 4. (a) State and prove Fatou' lemma. Show by means of an example that this result 5 cannot hold in case of general measurable functions.
 - (b) Let $\{U_n\}$ be a sequence of non negative measurable functions, and let 5

$$f = \sum_{n=1}^{\infty} U_n$$
. Then prove that $\int f = \sum_{n=1}^{\infty} \int U_n$.

(c) If f is a differentiable function on an Interval I, then prove that f' is measurable **4** on I.

9

5

- **5.** (a) Let E = [0, 16] and $f: E \to \mathbf{R}$ be a function defined by $f(x) = x^{-\frac{1}{4}}$. Then show **5** that $f \in L^1(E)$, but $f \notin L^4(E)$.
 - (b) State and prove Riesz Minkowski's inequality.
- 6. (a) State and prove Egoroff's theorem. (b) Let f and g be non - negative measurable functions defined on a set E with $f \leq g$ a.e. Then prove that $\int_{E} f \leq \int_{E} g$.
- 7. (a) Evaluate the integral (Lebergue) of the function $f: [0, 1] \rightarrow \mathbf{R}$ defined by 7

$$f(x) = \begin{cases} \frac{1}{3\sqrt{x}} & \text{if } 0 \le x \le 1\\ 0 & \text{if } x = 0 \end{cases}.$$

- (b) If f is an integrable function such that f = 0 a.e., then show that $\int f = 0$. **7**
- 8. (a) Show that outer measure of rational numbers is zero.
 - (b) Prove that a continuous function on a measurable set is measurable. Discuss 5 the converse.

(c) Let f be bounded measurable function defined on E and let E_1 and E_2 be **4** disjoint measurable subsets of E, then prove that $\int_{E_1 \cup E_2} f = \int_{E_1} f + \int_{E_2} f$.

- 0 0 0 -

2