

M.Sc. II Semester Degree Examination, September/October - 2022 MATHEMATICS

21MAT2C8L DSC8 : Fluid Mechanics

Time : 3 Hours

Maximum Marks : 70

Note : Answer **any five** of the following questions with question No.1 (Q1) is **Compulsory**, Each question carries **equal** marks.

1. (a) Define :

- (i) Viscous fluid and inviscid fluid
- (ii) Newtonian and non-newtonian fluid
- (iii) Dynamic viscosity and kinematic viscosity
- (iv) Uniform and non-uniform flow

(b) Derive the relation
$$\frac{D}{Dt} = \frac{\partial}{\partial t} + \begin{pmatrix} \rightarrow \\ q \end{pmatrix} \text{ where } \stackrel{\rightarrow}{q} = (u,v,w)$$
 6

- **2.** (a) Derive equation of motion under impulsive force and prove that impuls satisfy **7** the laplace equation.
 - (b) The velocity field at a point in fluid is given as $q = (\frac{x}{t}, y, 0)$. Obtain path 7 line and streak lines.
- **3.** (a) State and prove Bernoulli's theorem for a steady inviscid flow in a conservative **7** field of force and discuss the nature of the constant.

(b) An infinite mass of fluid is acted on by a force $\frac{\mu}{r^{1/2}}$ per unit mass directed to **7** the origin. If initially the fluid is at rest and there is a cavity in the form of the sphere r=C in it. Show that the cavity will be filled up after an interval

of time
$$\left(\frac{2}{5\mu}\right)^{\frac{1}{2}} \cdot C^{\frac{5}{4}}$$
.

- 4. (a) Define stream function. Write physical significance of stream function.
 (b) Derive Cauchy Riemann equations in cartesian and polar forms.
 7
- 5. (a) Define sources and sinks. And explain their utility in hydrodynamics.
 (b) State and prove Kelvin's circulation theorem.
 7

P.T.O.

76813

8

76813

pressure at a distance 'r' from the centre immediately falls to $\pi \left(1 - \frac{a}{r}\right)$.

Show further that, if the liquid is brought to rest by impinging on a concentric sphere of radius $\binom{a}{2}$, the impulsive pressure sustained by the surface of

this sphere is $\left[\frac{7 \pi \rho^2}{6}\right]^{\frac{1}{2}}$.

- (b) Find the trajectory of a free jet. Also, find the velocity at an arbitrary point of the jet.
- 7. (a) Show that the stream function φ and the velocity potential ϕ for a 7 two-dimensional irrotational motion satisfy Laplace equation.
 - (b) A space is bounded by an ideal fixed surface S drawn in a homogeneous 7 incompressible fluid. Satisfying the conditions for the continued existence of a velocity potential φ under conservative forces. Prove that the rate per unit time at which energy flows across S into the space bounded by S is

$$-\rho \iint \frac{\partial \varphi}{\partial t} \cdot \frac{\partial \varphi}{\partial n} \cdot ds$$

Where ρ is the density and δn an element of the normal to δs drawn into the space considered.

- **8.** (a) Show that the family of curves $\phi(x, y) = C_1$ and $\psi(x, y) = C_2$, C_1 , C_2 being **5** constants, cut orthogonally at their points of intersection.
 - (b) The velocity in the flow field is given by : q=i (Az-By)+j(Bx-Cz)+K(Cy-Ax)
 Where A, B, C are non-zero constants.
 Determine the equation of the vortex lines.
 - (c) Write advantages of images in fluid dynamics.

4

5

10

- 0 0 0 -

###