No. of Printed Pages : 2

21MAT2C9L

Sl. No.

M.Sc. II Semester Degree Examination, October - 2023

MATHEMATICS

Differential Geometry

(NEP)

Time : 3 Hours	Maximum Marks : 70
Note : Answer any five questions with question No. 1 compulsory.	

1. (a) Define tangent vector and tangent space on E^3 and show that tangent space $T_p[E^3]$ is isomorphic to the space E^3 .

(b) For any three 1 - forms $\phi_i = \sum_j f_{ij} dx_j$ ($1 \le i \le 3$) prove that

$$\phi_1^{\wedge} \phi_2^{\wedge} \phi_3 = \begin{vmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{vmatrix} dx_1 dx_2 dx_3$$

- (c) Find the unique curve $\alpha(t)$ such that $\alpha(0) = (1, 0, -5)$ and $\alpha'(t) = (t^2, t, e^t)$. 5+5+4
- 2. (a) If α is a regular curve in E^3 then there exist a reparametization β of α such that β has unit speed.
 - (b) Compute the Frenet formulae T, N, B, the curvature and Torsion functions of the unit speed helix $\beta(s) = \left(a \cos\left(\frac{s}{c}\right), a \sin\left(\frac{s}{c}\right), b\left(\frac{s}{c}\right)\right)$ where $c = (a^2 + b^2)^{\frac{1}{2}}$ and a, b > 0.
 - (c) Define isometry. If $C : E^3 \to E^3$ is an orthogonal transformation then prove that C is an isometry of E^3 . 5+5+4
- **3.** (a) Define Co-ordinate patch. If g is a differentiable real valued function on E^3 and C is a number then show that the subset. M : g (x, y, z) = C of E^3 is a surface if the differential dg is not zero at any point.
 - (b) Define surface on E^3 . Prove that every cylinder in E^3 is a surface in E^3 . **7+7**

P.T.O.

21MAT2C9L

- (ii) $z = \log(\cos x) \log(\cos y)$
- (iii) $z = (x + 3y)^3$

(iv)
$$z = (2x + y)^2 + \exp(x^2 + y^2)$$

- (b) Define Normal curvature and Normal vector field. If α is a curve in $M \subset E^3$ and S is the shape operator derived from unit normal vector field U, then show $\alpha''.U = S(\alpha').\alpha'$.
- **5.** (a) If θ_1 and θ_2 be the dual 1 forms on E_1 and E_2 on $M \subset E^3$. If ϕ is a 1 form and μ is a 2 form then prove that.

(i)
$$\phi = \phi(\mathbf{E}_1).\theta_1 + \phi(\mathbf{E}_2).\theta_2$$

(ii)
$$\mu = \mu(\mathbf{E}_1, \mathbf{E}_2) \theta_1^{\wedge} \theta_2$$

- (b) If α be a unit speed curve in $M \subset E^3$. E_1 , E_2 , E_3 is an adapted frame field such that E_1 is restricted to its unit tangent T, then show that α is a geodesic of M **8+6** if and only if $W_{12}(T) = 0$.
- **6.** (a) If F is an isometry of E^3 such that F(0) = 0 then show that F is an orthogonal transformation.
 - (b) Define regular mapping. Prove that a mapping X : D → E³ is regular if and only if X_u(d) and X_v(d) are u, v partial derivatives of X(u, v) = X(d) are linearly **7+7** independent ∀ d ∈ D where D⊂E².
- **7.** (a) Determine the principal curvature of circular cylinder in E^3 .
 - (b) Compute the dual 1 form, connection form W_{12} and Gaussian Curvature of the associated frame fields of the following orthogonal patches.
 - (i) $X(u, v) = (u\cos v, u\sin v, bv)$
 - (ii) $Y(u, v) = (u\cos v, u\sin v, au)$
- **8.** (a) If F is an isometry of E^3 , then show that there exist a unique translation T and a unique orthogonal transformation C such that F = TC or F = ToC.
 - (b) Define simple surface, prove that a plane in E^3 is a simple surface.
 - (c) Define the shape operator of $M \subset E^3$. For Each point 'P' of $M \subset E^3$, prove that the Shape operator $S : T_P(M) \to T_P(M)$ is a linear operator on the tangent plane of M at P. 5+5+4

- 0 0 0 -

8+6