

M.Sc. II Semester Degree Examination, September/October - 2022 MATHEMATICS

Time : 3 Hours Maximum			Marks: 70	
Note	:	Answer any five of the following questions. Question No. 1 is Compulsory . Ea question carries equal marks.	ch	
1.	(a)	Define reparametrization of a curve. 5+5 Deduce from the lemma $\alpha'(t)[f] = \frac{d}{dt} (f_0 \alpha)(t) \text{ that in the definition of directional derivative, the straight}$ line $t \rightarrow p+tV$ may be replaced by any curve α with initial velocity Vp ie $\alpha(0) = p$ and $\alpha'(0)=Vp$.	+4	
	(b)	If F is a mapping from E^n to E^m . Then prove that at each point p of E^n , the derivative map $F_P : T_p(E^n) \to T_{F(p)}(E^m)$ is a linear transformation.		
	(c)	Show that curves given by (t, $1+t^2$, t), (sin t, cos t, t) and (sin ht, cos ht, t) all have the same initial velocity Vp. If $f = x^2 - y^2 + z^2$ then compute Vp[f] by evaluating f on each of this curve.		
2.	(a)	If $\beta : I \to E^3$ is a unit speed curve with curvature k>0 and the torsion τ , then g -prove that $T' = kN$, $N' = -kT + \tau B$, $B' = -\tau N$ where T, N, B are tangent, principal normal and binormal vector field.	+6	
	(b)	Let β be a unit speed curve in E ³ with k>0. Then show that β is a plane curve if and only if $\tau = 0$.		
3.	(a) (b)	Show that a plane in E^3 is a simple surface in E^3 . Show that a mapping $X : D \rightarrow E^3$ is regular if and only if $X_u(d)$ and $X_v(d)$, u, v partial derivatives of $X(u, v) = X(d)$ are linearly independent $\forall d \in D$ where $D \subset E^2$.	+8	
4.	(a) (b)	If α is a curve in $M \subset E^3$ then show that $\alpha'' \cdot U = S(\alpha') \cdot \alpha'$ For each point p of $M \subset E^3$, show that the shape operator $Sp : Tp(M) \to Tp(M)$ is linear on the tangent plane of M at p.	+7	

P.T.O.

- **5.** (a) Let θ_1 and θ_2 be the dual 1- forms of E_1 , E_2 on M. If ϕ is a 1 form and μ is a 2-form then prove the following. **6+8**
 - (i) $\phi = \phi$ (E₁) $\theta_1 + \phi$ (E₂) θ_2
 - (ii) $\mu = \mu$ (E₁, E₂) $\theta_1 \wedge \theta_2$
 - (b) If p is a nonumbilic point of M⊂R³ then prove that there exists a principal frame field on some neighborhood of p in M.
- **6.** (a) Prove the following :
 - (i) If S and T are translations, then ST = TS is also a translation.
 - (ii) If T is translation by 'a' then T has an inverse T^{-1} which is translation by '-a'.
 - (iii) Given any two points p and q of E^3 , there exists a unique translation T such that T(p) = q.
 - (b) If g is a differentiable real valued function on E^3 and C is a number, then show that the subset M : g (x, y, z)= C of E^3 is a surface if the differential dg is not zero at any point of M.
- **7.** (a) Discuss the shape operators of sphere and circular cylinder in E^3 . **7+7**
 - (b) Prove the following :
 - (i) $W_{13}\Lambda W_{23} = k\theta_1 \Lambda \theta_2$
 - (ii) $W_{13} \Lambda \theta_2 + \theta_1 \Lambda W_{23} = 2H\theta_1, \Lambda \theta_2$
- 8. (a) If F is an isometry of E^3 then prove that there exists a unique translation T and a unique orthogonal transformation C such that $F=T_0C$. 5+5+4
 - (b) Prove that any surface of revolution is a surface in E^3 .
 - (c) If S is the shape operator gotten from E₃, where E₁, E₂, E₃ is an adapted frame field on M⊂R³, then prove that for each tangent vector v to M at p.
 S(v) = W₁₃(v) E₁(p) + W₂₃(v) E₂(p)

- 0 0 0 -

7+7