No. of Printed Pages : 2

21MAT4C13L

Sl. No.

M.Sc. IV Semester Degree Examination, October - 2023

MATHEMATICS

Functional Analysis

(NEP)

Time : 3 Hours	Maximum Marks : 70
Note : Answer any five questions with question no. 1 compulsory .	

- 1. (a) Let M be a closed linear subspace of normed linear space 'N'. If the norm of a coset (x+M) in the quotient space 'N' defined by $||x+M|| = \inf \{||x+M|| : m \in M\}$ then show that N/M is a normed linear space. Further prove that 'N' is a Banach space then N/M is also Banach space.
 - (b) Let N and N' be normed linear space and T is a linear transformation from $N \rightarrow N'$, then prove that the following conditions are equivalent to one another.
 - T is continuous (i)
 - T is continuous at origin, i.e. $x_n \to 0 \Rightarrow T(x_n) \to 0$ (ii)
 - (iii) \exists a real number $k \ge 0$, such that $||T(x)|| \le k ||x||$
 - (iv) If $S = \{x : ||x|| \le 1\}$ is closed unit sphere in 'N' then its image T(S) is bounded in 'N'.
- 2. (a) State and prove Reisz Lemma.
 - (b) State and prove Hahn-Banach theorem.
- Let M be a closed linear subspace of a normed linear space and ϕ be a 3. (a) natural homomorphism onto the quotient N/M defined by $\phi(x) = x + M$. Prove that ϕ is a continuous for which $\|\phi\| \leq 1$.
 - Let *x*, *y* be two normed Linear space and $T : x \rightarrow y$ be onto mapping then show (b) that T^{-1} exists and is continuous if and only if there exist a constant m > 0 such that $m \|x\| \le \|T(x)\| \forall x \in X$. 7+7

P.T.O.

6+8

6+8

21MAT4C13L

- **4.** (a) State and prove Gram-Schmidth orthogonalization process.
 - (b) If S, S_1 , S_2 are non empty subsets of a Hilbert space H, then prove that the following conditions holds.
 - (i) $\{0\}^{\perp} = H \text{ and } H^{\perp} = \{0\}$
 - (ii) $S \cap S^{\perp} \subseteq \{0\}$
 - (iii) $S_1 \subseteq S_2 \Rightarrow S_2^{\perp} \subseteq S_1^{\perp}$
 - (iv) S^{\perp} is closed linear space of H
 - (v) $S \subseteq (S^{\perp})^{\perp} = S^{\perp \perp}$ 4+10
- **5.** (a) Prove that every non-zero Hilbert space contains a complete orthonormal set.
 - (b) If H is a Hilbert space then prove that there exist an antilinear norm preserving isometric isomorphism between H and H*.
 7+7
- 6. (a) State and prove Closed Graph theorem.
 - (b) Show that an operator T on H is unitary if and only if T ($\{e_i\}$) is a complete orthonormal set. 7+7
- 7. (a) If A_1 and A_2 are two self adjoint operators on H then show that $A_1 \cdot A_2$ is self adjoint if and only if $A_1 A_2 = A_2 A_1$.
 - (b) Show that a closed convex subset C of a Hilbert space 'H' contains a unique vector of smallest norm. **7+7**
- **8.** (a) Show that an operator T on H is unitary if and only if it is an isometric isomorphism of H onto itself.
 - (b) Show that if $Tx = \lambda x$ then $T^*x = \overline{\lambda}x$.
 - (c) If P is a projection on H with range M and null space N, then show that $M \perp N$, if and only if P is a self adjoint and in the case $N = M^{\perp}$. **5+5+4**

- 0 0 0 -

#