No. of Printed Pages : 2

21MAT4E3AL

Sl. No.

M.Sc. IV Semester Degree Examination, October - 2023

MATHEMATICS

Advanced Fluid Mechanics

(NEP)

Time : 3 Hours	Maximum Marks : 70
Note : Answer any five questions with question No. 1 is compulsory .	

- 1. (a) Explain Stoke's law of viscosity and hence derive the relation between stress **8+6** and rate of strain components.
 - (b) The state of stress at a point is given by the stress tensor $\sigma_{ij} = \begin{bmatrix} \sigma & a\sigma & b\sigma \\ a\sigma & \sigma & c\sigma \\ b\sigma & c\sigma & \sigma \end{bmatrix}$.

Where a, b, c are constants and σ is some stress value. Determine the constants a, b and c. So that the stress vector on the octahedral plane.

n =
$$\left(\frac{1}{\sqrt{3}}i + \frac{1}{\sqrt{3}}j + \frac{1}{\sqrt{3}}k\right)$$
 vanishes.

- 2. Define the law of conservation of momentum and derive the Navier Stroke 14 equation in the form $\rho \left[\frac{\partial \vec{q}}{\partial t} + \begin{pmatrix} \vec{r} \\ q \cdot \nabla \end{pmatrix} \vec{q} \right] = -\nabla p + \rho \vec{g} + \mu \nabla^2 \vec{q}$.
- **3.** (a) State and prove Buckingham- π theorem.
 - (b) Define the similarity of two flows and also explain the physical significance of the following non-dimensional parameter.
 - (i) Reynold's number
 - (ii) Mach number
 - (iii) Prandtl number
- **4.** Define the plane Poiseuille flow. For such a flow obtain the velocity distribution, **14** average velocity, maximum velocity, mass flow rate and skin friction.

P.T.O.

7+7

chanics

21MAT4E3AL

- 5. Define : (a)
 - **Displacement thickness** (i)
 - Momentum thickness (ii)
 - (iii) Energy thickness,

Show that :

(i)
$$\int_0^{\delta} \left(\frac{u}{v}\right) dy = \delta - \delta_1$$

(ii)
$$\int_0^{\delta} \left(\frac{\mathbf{u}}{\mathbf{v}}\right)^2 dy = \delta - \delta_1 - \delta_2$$

(iii)
$$\int_0^{\delta} \left(\frac{u}{v}\right)^3 dy = \delta - \delta_1 - \delta_3$$

(b) Discuss the Blasius equation for boundary layer on a flat plate and calculate the coeffecient of skin friction.

6. (a) Define Circulation. Show that
$$\frac{d\Gamma}{dt} = V\nabla^2 T$$
. **7+7**

- Define Reynold's number and indicate it's significance. (b)
- 7. Discuss the velocity distribution in the case of the Hagen-Poiseuille flow of a 7+7 (a) viscous incompressible fluid.
 - Derive the two-dimensional thermal boundary layer equations for flow over (b) a flat plate using the order of magnitude approach.
- 8. Show that the time rate of change of circulation in a closed circuit, drawn in (a) a viscous incompressible fluid under the action of conservative forces, moving with fluid depends only on the kinematic viscosity and the space rate of change of vorticity components at the contour. 5+5+4
 - Find the velocity distribution for plane Couette flow of a viscous incompressible (b) fluid.
 - Find Displacement thickness and Momentum thickness for the velocity (c)

distribution in the boundary layer given by, $\frac{u}{v} = 2\left(\frac{y}{\delta}\right) - \left(\frac{y}{\delta}\right)^2$.

-000-

#