No. of Printed Pages : 2

Sl. No.

21PHY1C1L

M.Sc. I Semester Degree Examination, April/May - 2023 PHYSICS

Mathematical Methods of Physics

(CBCS)

Time : 3 Hours

Maximum Marks: 70

Notes : (i)	Question No.	1 is	compulsoru.
10000 . (9	<i>Queention</i> 110.	- 10	compation g.

(ii) Answer **any four** questions from Q.No. **2** to Q.No. **8**.

1.	(a)	Solve $L\frac{di}{dt} + \frac{\int i dt}{C} = 0$, the differential equation which means that the self-
		induction and capacity in a circuit neautralize each other. Determine the constants in such a way that I is the maximum current and $i=0$ when $t=0$.
	(b)	Using Hermite differential equation show that $H_n(-x) = (-1)^n H_n(x)$.
	(c)	By using Bessel's differential equation, Show that $xJ_n(x) = -nJ_n(x) + xJ_{n-1}(x)$.
		6+4+4=14
2.	(a)	Find the fourier series of function as $f(x) = \sin x$ for $-\pi < x < \pi$.
	(b)	Find the Laplace Transform of (i) t e^{at} (ii) $t^n e^{at}$ 8+6=14
3.	(a)	What is linear operator? Explain the algebra of linear operators.
	(b)	Show that (i) $TT = TT = T$ (ii) $T1(T2T3) = (T1T2)T3$ where, T, T1, T2 and T3 be linear operators on vector space V.
	(c)	Explain in brief matrix representation of operators. 6+4+4=14
_		
4.	(a)	Show that the real and imaginery parts of the function log z satisfy Cauchy- Riemann equations when z is not zero. Also find the derivative of log z.
	(b)	State and prove Cauchy residue theorem. 7+7=14
	(0)	
5.	(a)	Define the terms with an example :
_ ~	()	(i) Group (ii) Subgroup (iii) Classes.
	(b)	Explain the irreducible representations of SU(2) group.
	(c) (c)	Write a note on tensor algebra.6+4+4=14
	(-)	

P.T.O.

21PHY1C1L

- 2
- **6.** (a) Find the Fourier sine and cosine transform of $f(x) = x^2$; 0 < x < 4.
 - (b) State and prove Cayley-Hamilton Theorem for the square matrices. **8+6=14**

9+5=14

- 7. (a) State and prove Stoke's theorem in vector analysis.
 - (b) State and prove quotient law of tensors.
- 8. (a) Find the Laplace transform of the function $F(t) = \frac{e^{at}-1}{a}$
 - (b) Write a note on Norms in linear algebra.
 - (c) What are lie groups ? Explain with an example. 5+4+5=14

###