No. of Printed Pages : 1

Sl. No.

21PHY3E1BL

M.Sc. III Semester Degree Examination, April / May - 2023 PHYSICS

Advanced Nuclear Physics

(CBCS)

Tim	Time : 3 Hours Maximum Marks : 70		
Note : (i)Question No. 1 is compulsory.(ii)Answer any four questions from Q.No. 2 to Q.No. 8.			
1.	(a) (b)	Explain the effect of spin - orbit interaction between the nucleons that leads to shell closure at all magic numbers. Discuss the vibrational model of the nucleus and comment on the energy eigen values.	7 7
2.	(a) (b)	Give the theory of ground state of the deuteron under central forces. Show that the nucleons prefer to spend most of their time outside deuteron boundary. Write a note tensor nature of nuclear forces.	10 4
3.	(a)	Explain the theory of stripping and pickup reactions.	10
	(b)	Write a note on optical potential.	4
4.	(a)	Give the basic principle of neutron detection and hence discuss the construction and working of BF3 counters.	10
	(b)	Classify neutrons on the basis of their energy.	4
5.	(a) (b)	Discuss principle, theory and instrumentation of the neutron activation analysis (NAA) method for elemental analysis in given soil sample. Explain the principle of PIXE.	10 4
6.	(a)	Derive the wave mechanical expressions for the elastic scattering and reaction cross sections and discuss their interpretation.	10
	(b)	What are heavy ions ? Give the special features of heavy ion reactions.	4
7.	(a)	Explain the process of nuclear fusion. Discuss about controlled thermonuclear reactions.	10
	(b)	Bring out the principle of positron annihilation technique.	4
8.	(a)	Explain the process of proton - proton scattering at low energies.	5
	(b)	Explain the significance of Distorted Wave Born Approximation (DWBA).	5
	(c)	Explain the process of Rutherford back scattering.	4

##