

B.Sc. I Semester (NEP) Degree Examination, March/April - 2022 MATHEMATICS

Paper No. 1 DSC - 1 - Fundamentals of Algebra and Calculus

Time : 3 Hours	Maximum Marks : 60	
Instruction : (i)	Answer all questions from Section-A.	

(ii) Answer **any four** questions from **Section-B.**

(iii) Answer any two full questions from Section-C.

SECTION - A

- 1. Answer the following sub-questions, each sub-questions carries **one** mark. **10x1=10**
 - (a) Define Eigen value and Eigen vector of a square matrix.
 - (b) Find the Rank of the Square Matrix A.

Where,
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix}$$
.

- (c) Find the Angle between radius vector and the tangent for $r^2 = a^2 .\cos 2\theta$.
- (d) Find the radius of curvature of the curve $y = 4\sin x \sin 2x$ at $x = \frac{\pi}{2}$.
- (e) Find the left hand and right hand limits of f(x) = |x| As x tends to 0.
- (f) State Rolle's Theorem.
- (g) Find the nth derivative of $\sin^3 x$.
- (h) If $y = \log(x^2 4)$, then find y_n .
- (i) State Cayley Hamilton Theorem.

(j) Evaluate :
$$\lim_{x \to 0} \frac{e^x - e^{-x} - 2x}{x^2 \cdot \sin x}$$
.

P.T.O.

SECTION - B

Answer **any four** of the following questions, each question carries **five** marks. **4x5=20**

2. Using Cayley - Hamilton's Theorem find A^{-1} if, $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$.

- **3.** Show that the pair of Circles Intersect Orthogonally : $r^n = a^n.cosn\theta$, $r^n = b^n.sinn\theta$.
- **4.** Verify Lagrange's Mean Value Theorem for $f(x) = x^2 3x 2$ in [-2, 3].
- 5. If $y = \sin(m.\sin^{-1}x)$ then prove that, $(1-x^2)y_{n+2} (2n+1)xy_{n+1} + (m^2 n^2)y_n = 0$.
- **6.** Find the evolute of the parabola $y^2 = 4ax$.
- Find the real values of λ, for which the system, x+2y+3z=λx 3x+y+2z=λy 2x+3y+z=λz. have non-zero solutions.

SECTION - C

Answer **any three** of the following questions, each question carries **ten** marks. **3x10=30**

5

8. (a) Reduce the Matrix A to its normal form where,

$$\mathbf{A} = \begin{bmatrix} 2 & -2 & 0 & 6 \\ 4 & 2 & 0 & 2 \\ 1 & -1 & 0 & 3 \\ 1 & -2 & 1 & 2 \end{bmatrix}.$$

And hence find the Rank of Matrix.

 (b) Verify the following system of equations is consistent. Solve if consistent. 5 x+2y-z=1 3x+8y+2z=28 4x+9y-z=14

9.	(a)	Find the angle of intersection of the pair of curves. $r = \sin\theta + \cos\theta$ and $r = 2\sin\theta$.	5
	(b)	Derive derivative of Arcs in cartisian form and parametric form.	5
10.	(a)	State and prove Cauchy's Mean Value Theorem (Second Mean Value Theorem).	6
	(b)	Obtain expansion of e^x as an infinite series (Mac Laurin's)	4
11.	(a) (b)	State and prove Leibnitz Theorem. Trace the curve $y^2(a-x) = x^3$, $a > 0$.	4 6
12.	(a)	Show that the pair of curves intersect orthogonally.	6
	(b)	$r = a(1 + \sin\theta), r = b(1 - \sin\theta)$ Find the Pedal equation $(p-r)$ equation of the curve. $r = a(1 - \cos\theta)$	4

- o O o -

#