

B.Sc. I Semester Degree Examination, March/April - 2023 MATHEMATICS

1 DSC : Fundamentals of Algebra and Calculus

(NEP)

Time : 2 Hours

Note : Answer **all** the sections.

SECTION - A

Answer the following sub-questions. Each Sub-question carries one mark. 10x1 = 10

- 1. Define symmetric matrix. (a)
 - (b) Define characteristic matrix of a square matrix.
 - Define system of linear equations. (c)
 - Define characteristic vector of a square matrix. (d)
 - (e) Write the formula for Arc length in parametric form.
 - Write the co-ordinates centre of curvature. (f)
 - (g) If $f(x) = \begin{cases} x \cdot \sin \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$ determine whether f(x) is continuous at x=0.

(h) Evaluate
$$\lim_{x \to 0} \left[\frac{1 - \cos x}{\sin x} \right]$$
.

- (i) Find the n^{th} derivative of e^{mx} .
- (j) If $y = e^{m \sin^{-1} x}$ find $\frac{dy}{dx}$.

SECTION - B

Answer **any four** of the following questions.

2. Find the rank of the matrix
$$A = \begin{bmatrix} 3 & 5 & 7 \\ 18 & 30 & 42 \end{bmatrix}$$
.

Find the eigen values of the matrices $\begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix}$. 3.

P.T.O.

46126

4x5 = 20

Maximum Marks: 60

46126

- **4.** Derive the formula for angle between the radius vector and the tangent at a point on the curve.
- 5. Verify the Roll's theorem for the function $f(x) = x^2 6x + 8$ in the interval [2, 4].
- **6.** Find the nth derivative of $e^{ax}\cos(bx+c)$.
- 7. Find the point of inflexion on the curve $x = \log(y/x)$.

SECTION - C

Answer any three of the following question.

8. (a) Verify the Cayley Hamilton theorem for the matrices $\begin{vmatrix} 1 & -2 \\ 3 & 4 \end{vmatrix}$.

(b) If A is a symmetric (skew symmetric) matrix then KA is symmetric where K is scalar.

3x10=30

6

6

4

9. (a) Solve the system of equation. x+2y-3z=0 3x-y+z=05x+3y+2z=0

(b) Find Eigen vector $\begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$ associated with value 1. 4

10. (a) Show that the pedal equation of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is **6**

$$\frac{a^2b^2}{p^2} + r^2 = a^2 + b^2.0$$

- (b) Find the pedal equation of curve $r^m = a^m \cos \theta$.
- **11.** (a) Expand the function $\log_e(1+x)$ upto term containing x^3 by Maclaurin's **5** expansion.

(b) Evaluate
$$\lim_{x \to \frac{\pi}{2}} (\sin x)^{\tan x}$$
. 5

12. (a) If $y = \left[\log cx + \sqrt{1+x^2} \right]^2$ show that $(1+x^2)y_{n+2} + (2n+1)xy_{n+1} - n^2y_n = 0.$ (b) Find the nth derivative of $\sin^2 x$. **4**

- 0 0 0 -

##