

BCA I Semester (NEP) Degree Examination, March/April - 2022 COMPUTER SCIENCE

Mathematical Foundation

Time: 3 Hours Maximum Marks: 60

SECTION - A

Answer the following sub-questions. Each sub-question carries one mark. 10x1=10

- 1. (a) Define proposition. Give an example.
 - (b) Indicate the Negation for the following statement. "Computer Science is a hard subject".

(c) If
$$A = \begin{bmatrix} 2 & 3 \\ 0 & -1 \end{bmatrix}$$
, $B = \begin{bmatrix} 4 & 5 \\ 7 & 6 \end{bmatrix}$ find $2A + B$.

(d) If
$$A = \begin{bmatrix} 1 & -3 & 5 \\ 6 & 2 & 4 \end{bmatrix}$$
 find $5A'$

- (e) Find the radian measure to the degree 240° .
- (f) Find $\cos x$, if $\sin x = \frac{3}{5}$, x lies in Second Quadrant.
- (g) Differentiate $x^3 5x^2 + 7x + 1$ w.r.to. x.
- (h) Find $\frac{d^2y}{dx^2}$ for the function $y = x^2 + 3x + 2$.
- (i) Evaluate: $\int (2x^2 + e^x) dx$
- (j) Evaluate: $\int_{0}^{1} x^{2} dx$

46143

2

SECTION - B

Answer any four of the following questions. Each question carries five marks.

4x5=20

2. State the converse, inverse and contrapositive for the following statement. "If a triangle is not Isosceles then it is not equilateral."

3. By using properties of Determinants show that $\begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} = (a-b)(b-c)(c-a).$

4. Show that $\sin 3x = 3\sin x + 4\sin^3 x$.

5. Evaluate: $\lim_{x\to 2} \frac{3x^2 - x - 10}{x^2 - 4}$.

6. Evaluate : $\int x \cdot \cos x \cdot dx$

7. Find the inverse of matrix $\begin{bmatrix} 5 & 1 \\ -3 & 4 \end{bmatrix}$

SECTION - C

Answer any three of the following questions. Each question carries ten marks.

3x10=30

8. Verify the given compound proposition :

[($p \to r$) \land ($q \to r$)] \to [($p \ \lor \ q$) $\to r$] is either Tautology or Contradiction.

9. Solve the following by Cramer's Rule :

$$3x + y + 5z = 10$$

$$x+y+z=0$$

$$2x - y + 3z = 9$$

10. Prove that the function f(x) = 5x - 3 is continuous at x = 0, x = 3 and x = 5.

11. (a) Differentiate $\sin x \cdot \cos x$ w.r.to. x.

(b) Differentiate
$$\frac{x+1}{x}$$
 w.r.to. x .

12. Evaluate :
$$\int_{0}^{5} \int_{0}^{x^2} x (x^2 + y^2) dxdy$$

- o O o -

3