

B.C.A. I Semester Degree Examination, March/April - 2023 COMPUTER SCIENCE

Mathematical Foundation

(NEP)

Time : 2 Hours

Maximum Marks : 60

Note : Answer **all** the sections.

SECTION - A

Answer the following sub-questions. Each sub-question carries one mark. 10x1=10

- **1.** (a) Define contradiction.
 - (b) State De Morgan's laws.
 - (c) If $A = \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 5 & 4 \\ 6 & 7 \end{bmatrix}$ find A + 2B.
 - (d) If $A = \begin{bmatrix} x & 2 \\ 4 & 8 \end{bmatrix}$ is a singular matrix, find 'x'.
 - (e) Express 225° (degree) in radians.
 - (f) Find the numerical value of $sin 150^{\circ}$.
 - (g) Differentiate $2x^2 + 3x + 4$ wrt x.

(h) Find
$$\frac{d^2y}{dx^2}$$
 for $y = x^3 + 3x^2 + 2x + 5$.

(i) Evaluate :
$$\int_{0}^{2} x^{3} dx$$

(j) Evaluate : $\int 2x^3 - 5x + 3 dx$

P.T.O.

46143

2.

SECTION - B

Answer **any four** of the following questions. Each question carries **five** marks. 4x5=20State the converse, inverse and contrapositive for the following proposition. "If a quadrilateral is parallelogram then its diagonal bisects each other".

3. Find the inverse of a matrix $A = \begin{bmatrix} -5 & 6 \\ -9 & 7 \end{bmatrix}$.

4. Show that $\cos 2A = 1 - 2 \sin^2 A$.

- **5.** Evaluate : $\lim_{x\to 0} \frac{x}{\sqrt{1+x} \sqrt{1-x}}$.
- **6.** Evaluate : $\int x \sec^2 x \, \mathrm{d}x$.
- 7. By using properties of determinants show that $\begin{bmatrix} 1 & a & bc \\ 1 & b & ca \\ 1 & c & ab \end{bmatrix} = (a-b)(b-c)(c-a).$

SECTION - C

Answer any three of the following questions. Each question carries ten marks.

3x10=30

- 8. (a) What is Quantifier ? Explain types of Quantifiers.
 (b) Construct the Truth table for the following proposition (P∧~q)↔~p.
- 9. Solve the following by Cramer's rule. x+y+z=7 2x+3y+2z=174x+9y+z=37
- 10. If $\cot x=5/12$, where x is in 3rd Quadrant. Then find all the remaining Trigonometric ratios.

11. Show that the function $f(x) = \begin{cases} x^3 - 3, & \text{if } x \le 2 \\ x^2 + 1, & \text{if } x > 2 \end{cases}$ is continuous at x = 2.

12. Evaluate : $\int_{0}^{2} \int_{0}^{1} x^2 y^2 \, \mathrm{d}x \, \mathrm{d}y$

- 0 0 0 -

##