

B.Sc. I Semester Degree Examination, March/April - 2023 MATHEMATICS

Business Mathematics OE

(NEP)

Time: 2 Hours Maximum Marks: 60

Note: Answer all sections.

SECTION - A

1. Answer the following questions.

10x1=10

- (a) Define Set and give example.
- (b) Define diagonal Matrix.
- (c) Give example of Null matrix.
- (d) If $A = \{4 \ 8 \ 9\} B = \{3 \ 2 \ 1\}$ then find $A \cup B$.

(e) If
$$\begin{bmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
, then find values of x , y , z .

(f) If
$$A = \begin{bmatrix} 0 & 2 & 3 \\ 2 & 1 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 7 & 6 & 0 \\ 0 & 4 & 1 \end{bmatrix}$ find $A - B$.

- (g) Define continuous function.
- (h) If $y = e^{\sin x}$ find $\frac{dy}{dx}$.
- (i) Find degree of homogeneous function $x^3 + y^2x + y^3 = 0$
- (j) Write order of the Equation $\left(\frac{dy}{dx}\right)^3 + \frac{d^2y}{dx} + y = 0$.

91515 2

SECTION - B

Answer any four of the following questions.

4x5=20

- **2.** Find the value of $(125)^{\frac{2}{3}}$.
- 3. Find the Adjoint of $\begin{bmatrix} 1 & 4 & -2 \\ -2 & -5 & 4 \\ 1 & -2 & 1 \end{bmatrix}$.
- **4.** Solve $3x_1 + 2x_2 + x_3 = 3$ $2x_1 - x_2 - 3x_2 = -3$ $x_1 + x_2 + x_3 = 4$

by using elementary operation.

- **5.** Verify Euler formula for $u = \sin^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$ then prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \frac{1}{2}$ tanu.
- **6.** If S is the distance transversed in meters by the particle in time t sec and $S=4t^4-6t^3+8t^2-t$, find the velocity and acceleration.
- 7. Examine the function $f(x) \begin{cases} \frac{x^3 9}{x 3} & \text{when } x \neq 3 \\ 9 & \text{when } x = 3 \end{cases}$ for continuity at x = 2.

SECTION - C

Answer **any three** of the following.

3x10=30

- **8.** (a) If $A = \{-1, 1, 0, 2, 5\}$ and $f : A \rightarrow I$ (I is the set of integer) is defined by f(x) = x 2, find the range of f.
 - (b) Find the value of $\log_{2\sqrt{2}} 64$.

3 91515

9. (a) Prove that
$$\begin{vmatrix} 1+a & b & c \\ a & 1+b & c \\ a & b & 1+c \end{vmatrix} = 1+a+b+c.$$
 6

- (b) A determinant changes its sign when any two of its row or columns are interchanged.
- **10.** (a) Solve linear equation x+y+z=3, 3x+4y+7z=14, x-y+z=1.
 - (b) Find for what values of λ and μ the system x+y+z=6, 2x+4y+6z=20, $x+2y+\lambda z=\mu$ has a unique sum.
- **11.** (a) Examine the different ability of the function $f(x) = x^2 + 2$ at x = 2.
 - (b) If $u = \phi (y + ax) + \psi (y ax)$ show that $\frac{\partial^2 u}{\partial x^2} = a^2 \frac{\partial^2 u}{\partial y^2}$.
- **12.** (a) Find the total derivative of u wrt 't' when $u = x\sin y$, where $x = (1 + t^2) y = t^3$.
 - (b) Define implicit function and give examples.

