Ph.D Course Work Examinations, July-2023

PHYSICS

Course-IV: Fluorescence Spectroscopy

[Time: 3Hours] [Max		Marks: 70]	
Instr	uctio	ns: 1) Answer all the questions.	
		2) Part A: Questions 1-8 carries 15 marks each.	
		3) Part B: Questions 9-12 carries 5 marks each	
		PART A	
1	a)	State and explain Frank-Condon Principle.	5+10
	b)	What is a rigid and non-rigid rotator? Explain the diatomic molecule as a simple	
		harmonic oscillator.	
		OR	
2	a)	Explain in detail the various molecular transitions using the Jablonski diagram.	10+5
	b)	Write a note on long-lifetime probes.	10+5
3	a)	Mention the characteristics of an ideal spectrofluorometer.	5 + 10
	b)	Discuss in detail different light sources and optical filters used in	
		spectrofluorometer.	
1	a)	UK Give an account of quantum viold standards and their importance in fluorescence	5+10
4	a)	spectroscopy	3+10
	b)	Discuss the principle construction and working of the Time-correlated single-	
	0)	photon counting (TCSPC) instrument.	
5	a)	Derive an expression for the Lippert equation based on solvent effects.	10+5
	b)	Discuss the effect of temperature on the emission spectra of molecules using a	
	,	suitable example.	
		OR	
6	a)	Briefly explain the effect of shear stress on membrane viscosity.	5+5+5
	b)	Outline the interaction of calcium calmodulin exposed to a hydrophobic surface.	
	c)	Write a note on advanced solvent-sensitive probes.	
7	a)	Discuss the combined dynamic and static quenching process using Stern-Volmer	5 + 10
		plots.	
	b)	Discuss any one application of quenching to proteins.	
0	-)	OR I I I I	10+5
8	a)	Discuss the theory of resonance energy transfer for a donor-acceptor pair and	10+5
	b)	Write a brief note on distance massurements in a Halical Malittin using PET	
	0)	write a orier note on distance measurements in α -mencal mentum using KE1.	
		<u>PART B</u>	
9		Write the difference between steady-state and time-resolved fluorescence	5
		methods.	
		OR	_
10		Explain the calibration of monochromators in a spectrofluorometer.	5
11		Discuss the effects of solvent polarity on the fluorescence of the molecule.	5
10		UK Write e nete en Hemetmanfen en Hilstenster fen	5
12		write a note on Homotranster and Heterotranster.	3
