Ph.D Course Work Examinations, July-2023 MATHEMATICS

Course-III -1.3: Mathematics

Time:	Max.Marks:70			
Instru	ictions to Candidates: (i) Answer any Five full questions.			
(ii) Each question carries equal marks.				
1(a) (b)	 State and prove Bolzano-Weierstrass theorem for sequences. State and prove the following inequalities: Young's inequality Bessel's inequality 	(6+8)		
2(a)	Prove or disprove: If $f_n : [a,b] \to R$ is a sequence of integrable functions			
	and converges pointwise to f then f is integrable over $[a,b]$.			
(b)	If $C[0,1]$. is the set of all real valued continuous function on $[0,1]$., show	v (7+7)		
	that $C[0,1]$ is a complete metric space under the metric:			
	$d(f,g) = Max_{x\in[0,1]} f(x) - g(x) $			
3(a) (b) (c) 4(a)	State and prove Fundamental theorem of Homomorphism. Prove that every square matrix satisfies its characteristic equation. Let V be the vector space of all 2×2 matrices over the field F. Prove th V has dimension 4 by exhibiting a basis for V which has 4 elements. With the help of Cayley-Hamilton the theorem find A^6 , Where	nat (5+5+4)		
(b)	$A = \begin{pmatrix} 2 & 1 & 2 \\ 5 & 3 & 3 \\ -1 & 0 & -2 \end{pmatrix}.$ In the vector space R^3 express the vector (1, -2, 5) as a linear combination of the vector (1,1,1), (1,2,3) and (2,-1,1).			
(c)	Consider $T: P_2(R) \to P_4(R)$ given by $T[P(x)] = P'(x) + \int_0^x P(t) dt$ w.r.	(5+4+5) t		
5(a)	$\{1, x, x^2, x^3\}$ and $\{1, x, x^2, x^3, x^4\}$ as standard basis of $P_3(R)$ and $P_4(R)$ fin transformation matrix. Solve the following using Lagrange method (i) $y^2(x-y)p + x^2(y-x)q = z(x^2+y^2)$.	nd		
(b)	(ii) $yz p + 2xq = xy$. Solve the following using Charpit's method (i) $p^2 + q^2 = z^2(x+y)$.	(7+7)		

(ii) $p^2 + q^2 = z^2 (x + y)^2$.

- 6(a) Find the equation of the system of surface which cut orthogonally the cones of the system $x^2 + y^2 + z^2 = c x y$
- (b) Show that the equations x p yq = 0 and z(z p + yq) = 2xy are (7+7) compatible and solve them.
- 7(a) Using Euler's and Modified Euler's method compute y(2) from.

$$\frac{dy}{dx} = \frac{y - x}{y + x}; \qquad y(0) = 1.$$

- (b) Evaluate the approximate value of $\int_{0}^{\pi/2} Sin(x) dx$ by (a) Trapezoidal rule (b) (7+7) Simpson's $1/3^{rd}$ rule (c) Simpson's $3/8^{th}$ rule.
- 8(a) Estimate the value of y(1.05) using the Hermite interpolation formula from the following data.

x	У	<i>y</i> ′
1.00	1.00000	0.50000
1.10	1.04881	0.47673

(b) Discuss the rate of convergence of the Newton-Raphson method. (7+7)
