Ph.D. Course Work Examinations, July-2023 MATHEMATICS

Course-IV-1.4 (D): Wavelets

Time: 3 Hrs

Max.Marks:70

Instructions: Answer any five questions and each question carries equal marks.

1. (a) Consider the set $V = \{a : t/t \in (0,1)\}$. Which of the following is a vector space? [5+5+4]

(i) $a \in (0,1)$ (ii) $a \in \pounds$ (iii) $a \in \square$

(b) Find the distances between two vectors s and g with respect to metrics: d_∞, d₁, d₂ and d₃. Where s(n) = δ(n) + 2δ(n-1) + 4δ(n-2) + δ(n-3), g(n) = δ(n) + 2δ(n-1) - 4δ(n-2) - δ(n-3) with δ(n): Dirac delta sequence/ function.

	-2	4	-1	
© Find a basis for the subspace spanned by the columns in the matrix:	-1	1	0	
	0	0	3	
	1	1	8	
	2	4	15 15	
	3	9	15	J

2. (a) Use the standard inner product in i^{3} to obtain the reciprocal basis corresponding to a

	ſ	$\lceil 1 \rceil$		[1]		1	
basis:		0	,	1	,	1	 }.
		0		0		1	J

(b) Let P_n be the set of all polynomials of degree less or equal to n over i. Show that

 $\gamma = \{1, 1 + x, 1 + x + x^2, 1 + x + x^2 + x^3\}$ is a basis of P_3 . Also find the coordinates of $5 - x + 2x^2 + 8x^3$ with respect to γ . [7+7]

3. (a) Suppose $f: \mathfrak{t}^{2\times 2} \to \mathfrak{t}^{2\times 2}$ is a map defined by $f\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = \begin{bmatrix} a-b & -b \\ -c & d-c \end{bmatrix}$. Show that *f* is

linear and also find its matrix representation with respect to standard basis.

- (a) Define LTI system and illustrate its applications. [7+7]
- 4.(a) Illustrative the fast Fourier transform through matrix decomposition view.
 - (b) Use eight-point fast Fourier transform as down sampling operation to compute the FFT of {1,2,3,4,5,6,7,8}.
- 5. (a) Let s(t) = -u(t) + 3u(t-0.5) 2u(t-1), where u(t) is the unit step function. Express s(t) as linear combination of $\{1,1\}$ and $\{1,-1\}$.
 - (b) Construct and plot the wavelet basis functions for the space V_3 . Where V_3 is the set of all

Piecewise constant functions over
$$[0,1] = \left[0,\frac{1}{8}\right] \cup \left[\frac{2}{8},\frac{3}{8}\right] \cup \dots \cup \left[\frac{7}{8},1\right].$$
 [7+7]

- 6. (a) Determine the minimum sampling rates for the following signals:
 - (i) An audio signal with bandwidth 9kHz
 - (ii) A sinusoid $20\sin(80\pi t)$
 - (iii) A mixture of signal and noise, where the signal is bandlimited to 20kHz, and the noise is white.

(b) Find the Haar Wavelet transform of
$$f(t) = \begin{cases} \frac{1}{4}, t \in [0, 0.25) \\ \frac{-1}{4}, t \in [0.25, 0.5) \\ \frac{-1}{\sqrt{2}}, t \in [0.5, 0.75) \\ \frac{3}{2\sqrt{2}}, t \in [0.75, 1) \end{cases}$$
 [7+7]

- (7) (a) Write a detail note on Haar Multiresolution Analysis
 - (b) Up sample $\{1, 2, 1, 0, -1, 1\}$ by 3 and convolve with $\{1, 1, 1, -1\}$ [10+4]
- (8) Write a detail notes on Quadrature Mirror Filters.