No. of Printed Pages : 2

Sl. No.

22MCA1C4L

MCA I Semester (NEP) Degree Examination, June - 2023 COMPUTER SCIENCE

Mathematics for Computer Applications

Time : 3 Hours Maximu			0
Ins	truct	ion to Candidates : Answer any five full questions (Q. 1 is Compulsory).	
1.	(a) (b)	Find Eigen values and Eigen vectors of matrix $A = \begin{cases} 5 & 4 \\ 1 & 2 \end{cases}$ State and explain principle of Inclusion and Exclusion.	7 7
2.	(a)	What are nested quantifiers ? Translate the following statements into English. (i) $\forall x \forall y \ (x+y=y+x)$ Domain : Real numbers. (ii) $\forall x \forall \exists y \ (x=-y)$ Domain : Real numbers (iii) $\forall x \forall y \ ((x>0)^{(y<0)} \rightarrow (xy<0))$ Domain : Real numbers. (iv) Assume P(x, y) is $(xy=yx)$ Domain : Real numbers. (v) Assume P(x, y) is $(xy=6)$ Domain : Real numbers.	7
	(b)	Find tautology or contradiction for the following statements. (i) $A \rightarrow (A \lor B)$ (ii) $(P \rightarrow (\sim P)) \rightarrow \sim P$ (iii) $(Q \land \sim P) \land P$	7
3.	(a)	Solve the recurrence relation using characteristic rules and methods where	7
	(b)	$F_0 = 3$ and $F_1 = 17$. Define Homogeneous and in-homogeneous recurrence relation with example. Solve the following recurrence relation using substitution method. (i) $a_n = a_{n-1} + n^2$ where $a_0 = 7$ (ii) $a_n = a_{n-1} + \frac{n(n+1)}{2}$, $n \ge 1$	7
4.	(a)	Let 'X' is a continuous variable with probability density function given by : $f(x) = kx \ (0 \le x < 2)$ $= 2k \ (2 \le x < 4)$ $= -kx + 6k \ (4 \le x < 6)$ Fig. 11	7
	(b)	The following data are the number of seeds germinated out of 10 on damp filter paper for 80 sets of seeds. Fit a binomial distribution to these data. x: 0 1 2 3 4 5 6 7 8 9 10 f: 6 20 28 12 8 6 0 0 0 0 0	7
		P.T.C).

22MCA1C4L

5. (a) Show that the maximum number of edges in a simple graph with n vertices 7 is $n\frac{(n-1)}{2}$.

7

(b) Show that the following graphs ${\rm G}_1$ and ${\rm G}_2$ are isomorphic.

- 6. (a) Explain any five rules of Inference. 7 7 Solve the following recurrence relation using generating function. (b) $a_n - 6a_{n-1} + 12a_{n-2} - 8a_{n-3} = 0.$ $a_n = 3a_{n-1} + 2, n \ge 1 \text{ and } a_0 = 1.$ (i) (ii)
- 7. Two cards are drawn successively with replacement from a well shuffled 7 (a) pack of 52 cards. Find the mean and variance of the number of access. 7
 - Show that the given graph is Hamiltonian graph. (b)

8. Define planar graph. Prove that a complete graph five vertices is non-planar. (a) 7 (b) Four cards are drawn successfully with replacement from a well shuffled 7 pack of 52 cards. If a success is getting a king or queen of heart or club, then find the mean, variance of the number of successes.

- 0 0 0 -

####