

VIJAYANAGARA SRI KRISHNADEVARAYA UNIVERSITY JNANASAGARA CAMPUS, BALLARI-583105

Department of Electronics

V & VI Semester Syllabus

B.Sc. Electronics

With effect from 2023-24 and onwards

		Third Year: 5 th Seme	ster							
	Objective	: Real time learning and ability to solve comp	plex pro	oblems	that are i	ll-st	ructu	ured		
Category	Course code	Title of the Paper	Marks		Teaching hours/week			Credit	Duration of exam (Hrs)	
			IA	SEE	Total	L	Т	Р		
DSC5	21BSC5C5ELL	Electronic Communication	40	60	100	4	-	-	4	2
	21BSC5C5ELP	Electronic Communication Lab	25	25	50	-	-	2	2	3
DSC6	21BSC5C6ELL	Digital Circuits and Microprocessors	40	60	100	4	-	-	4	2
	21BSC5C6ELP	Digital Circuits and Microprocessors Lab	25	25	50	-	-	2	2	3
Other dept.	21BSC5CXXXXX	Course title - Theory	40	60	100	4	-	-	4	2
DSC course	21BSC5CXXXXX	Course title - Lab	25	25	50	-	-	2	2	3
Other dept.	21BSC5CXXXXX	Course title - Theory	40	60	100	4	-	-	4	2
DSC course	21BSC5CXXXXX	Course title - Lab	25	25	50	-	-	2	2	3
SEC3	21BSC5S3EL1	Cyber Security	25	25	50	2		2	3	1
	Total Credit 27									

		Third Year: 6 th Semester	r							
	Objecti	ve: Real time learning and ability to solve complex	x pro	blems tl	hat are il	l-sti	ructu	red		
Category	Course code	Title of the Paper	Marks		Teaching hours/week			Credit	Duration of exam (Hrs)	
			IA	SEE	Total	L	Т	Р		
DSC7	21BSC6C7ELL	Television and Digital Communication System	40	60	100	4	-	-	4	3
	21BSC6C7ELP	Television and Digital Communication System Lab	25	25	25	-	-	2	2	4
DSC8	21BSC6C8ELL	Instrumentation and Microcontrollers	40	60	100	4	-	-	4	3
	21BSC6C8ELP	Instrumentation and Microcontrollers Lab	25	25	25	-	-	2	2	4
Other	21BSC5CXXXXX	Course title - Theory	40	60	100	4	-	-	4	3
dept. DSC course	21BSC5CXXXXX	Course title - Lab	25	25	25	-	-	2	2	3
Other	21BSC5CXXXXX	Course title - Theory	40	60	100	4	-	-	4	3
dept. DSC course	21BSC5CXXXXX	Course title - Lab	25	25	25	-	-	2	2	3
IC1	21BSC6IC1EL1	Internship	25	25	25			4	2	2
			•			Т	otal C	Credit	26	

Name of the Department: Electronics Semester-V DSC 5: Electronic Communication

D SC 5. Electronic Communication				
Course Title: Electronic Communication	Course code: : 21BSC5C5ELL			
Total Contact Hours: 60	Course Credits: 04			
Internal Assessment Marks: 40 marks	Duration of SEE: 02 hours			
Semester End Examination Marks: 60 marks				

Course Outcomes (CO's): After the successful completion of the course, the student will be able to:

- Describe propagation of the Radio Engineering and its Fundamentals and transmissions lines.
- Distinguish the characteristics of Modulations and Demodulation techniques.
- Design of Modulators and demodulators (AM and FM).
- Able to know the radio transmitters and receivers.

DSC 5: El	ectronic Comn	nunication
-----------	---------------	------------

Unit	Description	Hours
1	Module 1: Antennas and radio wave propagation	12
	Antenna requirements, antenna parameters, resonant antenna, dipole antenna, folded	
	dipole antenna, reflectors, directors and yagi-uda antenna. EM theory- qualitative	
	analysis of electromagnetic theory, Maxwell's equations, (no derivations) pointing	
	theorem Propagation of radio waves, ionosphere-formation and composition,	
	mechanism of radio wave propagation, different modes of radio wave propagation	
	(qualitative analysis).	
2	Module 2: Transmission lines (T-lines)	12
	Introduction to T- lines, Types of T- lines, distributed parameters of T- lines, basic T-	
	line equation, characteristic impedance, impedance matching, propagation constant	
	(attenuation and phase constants), frequency and phase distortion, condition for	
	distortion less T- line, Standing wave ratio (SWR) and VSWR	
3	Module 3: Amplitude Modulation (AM)	12
	Define modulation, Need for modulation, different types of modulations – AM, FM	
	and PM, Expression for instantaneous voltage of AM waves, modulation index,	
	frequency spectrum and bandwidth, power relation in AM waves, SSB transmission	
	and its advantages. AM modulators - emitter modulator, base modulator and	
	collector modulation. AM detectors- square law diode detector and linear diode	
	detector.	
4	Module 4: Frequency modulation (FM)	12
-	Advantages of FM over AM, Expression for instantaneous voltage of frequency	14
	modulated wave, modulation index and international standards on FM	
	broadcasting. FM modulator - varactor diode modulator and theory of FET	
	reactance modulator, FM detectors- slop detector, balanced slop detector and	
	Foster-seelay discriminator.	

5	Module 5: Transmitters and Receivers	12		
	Function of AM transmitters and FM transmitters with block diagrams, Receiver			
	characteristics, AM-TRF receiver and super heterodyne receivers, need for			
	Automatic gain control (AGC) circuit. FM super heterodyne receiver explanation			
	with block diagram, comparison of AM &FM receivers			

- 1. Electronic Communication Systems George Kennedy
- 2. Electronic Communication Sanjeev Gupta.
- 3. Electronic Communication Roddy and Coolen.
- 4. Radio Engineering GK Mittal.
- 5. Handbook of Electronics Gupta and Kumar.

DSC 5: Electronic communication lab

Course Title: Electronic communication lab	Course code: : 21BSC5C5ELP
Total Contact Hours: 56	Course Credits: 02
Internal Assessment Marks: 25 marks	Duration of SEE: 03 hours
Semester End Examination Marks: 25 marks	

Course Outcomes (CO's): After the successful completion of the course, the student will be able to:

- Observe circuit signals and their Behavior.
- Study of various frequency response circuits of various amplifiers.
- Study of various radio circuits experiments and verify its behavior.
- Study of AM and FM modulation techniques.

Lab experiments:

1. RC Differentiator and Integrator (Trace input and output waveforms for sine, square and triangular waves).

- 2. Clipping Circuits Positive, Negative and Biased.
- 3. Clamping Circuits Positive, Negative and Biased.
- 4. Linear Ramp Generator using UJT.
- 5. Construction of Astable Multivibrator using IC 555.
- 6. Schmitt Trigger using IC 555.
- 7. Construction of Mono and Bistable Multivibrator using IC 741.
- 8. Two Stage RC Coupled Amplifier-Frequency Response.
- 9. Amplitude Modulator using Transistor.
- 10. A M Detector using Linear Diode Detector.
- 11. IF Amplifier.
- 12. Study of Pre-Emphasis and De-Emphasis Circuits.
- 13. Frequency Response of Loud Speaker.
- 14. Study of Characteristics of Receiver Sensitivity, Selectivity and Fidelity.
- 15. Double Tuned Amplifier.
- 16. Study of AGC Circuit (in AM detector).
- 17. Frequency Response of Microphone.

Note:

- 1. Minimum of EIGHT experiments must be carried out.
- 2. Experiments may be added as and when required with the approval of BoS.

- 1. Electronic Communication Systems George Kennedy
- 2. Electronic Communication Sanjeev Gupta.
- 3. Electronic Communication Roddy and Coolen.

DSC 6: Digital Circuits and Microprocessor

Course Title: Digital Circuits and Microprocessor	Course code: : 21BSC5C6ELL			
Total Contact Hours: 60	Course Credits: 04			
Internal Assessment Marks: 40 marks	Duration of SEE: 02 hours			
Semester End Examination Marks: 60 marks				

Course Outcomes (CO's): After the successful completion of the course, the student will be able to:

- Describe the registers and counters and their use-case in real time integrating on different circuits. Explore the knowledge of data conversion and its applications.
- Understanding the Assembly level programming with 8085 and performing the different programs and observe the outputs.
- Able to interface the various devices to 8085 microprocessor and study the impact and applications of the same by writing the programs.

Unit	Description	Hours
1	Module 1: Registers and counters Introduction, types of registers,4- bit serial in serial out, serial in parallel out, parallel in serial out and parallel in parallel out shift registers. Asynchronous counters logic diagram, truth table and timing diagram, 3-bit ripple counter, 4-bit up-down counter and modified counters – mod-3, mod-5, mod-7. 4- bit synchronous counter decade counter, IC7490. Synchronous updown	12
2	Module 2: Data processing circuits and converters Multiplexers: block diagram, truth table and logic circuit of 4-to-1 multiplexer and 16 to1multiplexer .The 74150 TTL multiplexer-pin out diagram, truth table explanation Demultiplexer-1-to4, 1-to-16 demultiplexer block diagram, truth table and logic diagram and explanation. The 74154demultiplexer-pin out diagram, truth table explanation Data converters- D to A converters-Binary weighted resister network and R-2R ladder network. A to D converters- Dual slope integrating type, successive approximation method, flash converter, resolution and accuracy for the above converters.	12
3	Module 3: Memory Devices Basic memory cell, classification, primary and secondary memories. Semiconductor memories- diode matrix, Magnetic memory, hard disc and floppy disc, optical memory-CD ROM, CD-RW and DVD. RAM- static and dynamic cells, ROM, EPROM, EEPROM, CCD's,	12

DSC 6: Digital Circuits and Microprocessor

4	4 Module 4: 8085Microprocessor Introduction to 8085 based microcomputer system, 8085 MPU, Architecture and pin configuration of 8085, Flags and special purpose registers. Instruction and timings- instruction classification, instruction format, instruction timing and operation status, instruction set, addressing mode and groups, instruction cycle.	
5	Module 5: 8085 programming and interfacing Programs on Data transfer instruction, arithmetic operation, logic operation, branch operation, flow chart and executing, writing assembly language programs. Need of interfacing devices, parallel and serial interfacing, PPI 8255, USART8251	12

- 1. Modern Digital Electronics RP Jain,
- 2. Digital Principles & applications AP Malvino,
- 3. Microprocessor Architecture, Programming and applications- RA Goankar .
- 4. Fundamentals of Microprocessors and Microcontrollers B Ra, Dhanpat Rai
- 5. Microprocessors and Digital Systems DV Hall

DSC 6: Digital Circuits and Microprocessor Lab

Course Title: Digital Circuits and Microprocessor Lab	Course code: : 21BSC5C6ELP			
Total Contact Hours: 56	Course Credits: 02			
Internal Assessment Marks: 25 marks	Duration of SEE: 03 hours			
Semester End Examination Marks: 25 marks				

Course Outcomes (CO's): After the successful completion of the course, the student will be able to:

- Observe circuit connections and their Behaviour.
- Study of various programs and their hands-on response.
- Study of various interfacing devices with 8085 and their response.
- Study of different IC's for multiplexing and demultiplexing.

Lab experiments:

- 1 Study of Multiplexer and using IC 74LS150.
- 2. Study of Demultiplexer using IC 74LS154.
- 3. Construction of DAC using R-2R ladder network.
- 4. Transfer of Data from various registers of 8085.
- 5. 1's and 2's Complements of 8-bit numbers using 8085
- 6. Addition and Subtraction of two 8-bit numbers using 8085
- 7. Addition of two 16-bit numbers using 8085
- 8. Larger among two hexadecimal numbers using 8085
- 9. Smaller among two hexadecimal numbers using 8085
- 10. Arranging the numbers in ascending order using 8085
- 11. Arranging the numbers in descending order using 8085
- 12. Finding the square root of a number using 8085
- 13. Interfacing 8-bit DAC and generating different waveforms.
- 14. Four bit binary counter using IC 7476
- 15. Interfacing 7- segment LED display and display of alphanumeric characters.
- 16. Interfacing 8-bit ADC.

Note: 1. Minimum of EIGHT experiments must be carried out.

2. Experiments may be added as and when required with the approval of BoS.

- 1. Modern Digital Electronics RP Jain,
- 2. Digital Principles & applications AP Malvino,
- 3. Microprocessor Architecture, Programming and applications- RA Goankar .
- 4. Fundamentals of Microprocessors and Microcontrollers B Ra, Dhanpat Rai
- 5. Microprocessors and Digital Systems DV Hall,

DSC 7: Television and Digital Communication System

Course Title: Television and Digital Communication System	Course code: 21BSC6C7ELL
Total Contact Hours: 60	Course Credits: 04
Internal Assessment Marks: 40 marks	Duration of SEE: 02 hours
Semester End Examination Marks: 60 marks	

Course Outcomes (CO's): After the successful completion of the course, the student will be able to:

- Describe the basic principles transmission and reception of monochrome and color TV and its various circuitary.
- Explore the knowledge of satellite and mobile communication and its applications.
- Advancement in the communication systems like digital signal processing and transmission techniques.
- Will understand basic principles of optical communication systems and applications.

DSC 7: Television and Digital Communication System	
--	--

Unit	Description	
1	Module 1: Basic television principles Introduction, Elements of TV broad casting system, block diagram and function of monochrome TV transmitter & receiver, Scanning- aspect ratio, progressive, horizontal, vertical, & interlaced scanning, composite video signal, blanking and synchronizing pulses, channel band width, CCIR –B TV channels allotment of frequencies, Camera tubes-introduction, types, construction, working and characteristics of vidicon and image orthicon camera tubes.	12
2	Module 2: Colour televisionIntroduction, essentials of CTV , mixing of colours, additive &subtractive mixing, colour TV signals, luminance and chrominance signals, colour TV camera, colour sub carrier frequency, PAL colour TV system, PAL encoder & decoder, colour picture tube, block diagram & function of colour TV receiver	
3	Module 3: Satellite communication Introduction, kepler's laws, (statements only) satellite orbits, circular, elliptical & geosynchronous satellite orbits, satellite links, the uplink & downlink, the transponder, path loss, multiple access methods- Qualitative study of FDMA, TDMA, CDMA, cellular/mobile communication, requirements, PCS system, computer network,- LAN&WAN, internet & its services.	
4	Module 4: Digital communication Introduction & basic digital communication, pulse modulation systems, PAM, PTM, PWM &PPM, Synchronous and Asynchronous transmission, probability of bit error, matched filter, Pulse code modulation systems, block diagram &working	12

	of PCM system, delta modulation, digital carrier systems, Block diagram &function of ASK, FSK, PSK, QPSK &DPSK	
5	Module 5: Optic fibers & communication Introduction, block diagram & function of optical communication system, advantages of optical communication, optical fiber & cable, types of optical fibers, modes of propagation, step index & graded index fiber, single and multimode fibers, propagation of light within a fiber Launching angle expression for numerical aperture(NA), fiber materials.	12

- 1. Electronic communication Sanjeev gupta
- 2. Electronic communication- Roody & coolen
- 3. principles of communication system- taub & schilling
- 4. Fibre optic communication G.kisser
- 5. Basic digital & analog communication systems B PLathi
- 6. Basic television Bernold Grob

DSC 7: Television and Digital Communication System Lab

Course Title: Television and Digital Communication System Lab	Course code: 21BSC6C7ELP
Total Contact Hours: 56	Course Credits: 02
Internal Assessment Marks: 25 marks	Duration of SEE: 03 hours
Semester End Examination Marks: 25 marks	

Course Outcomes (CO's): After the successful completion of the course, the student will be able to:

- Observe circuit connections and their Behaviour.
- Study of various pulse modulation techniques and their hands-on response.
- Study of various Temperature Transducer and their response.
- Study of various TV circuits and digital communications

Lab experiments:

- 1. Photo transistor characteristics.
- 2. Study of different optical fibers
- 3. Demonstration of TV transmitters using ICT
- 4. Four-bit binary adder using IC7483
- 5. Study of PAM,
- 6. Study of PWM.
- 7. Study of PPM.,
- 8. Study of ASK
- 9. Study of FSK,
- 10. Study of PSK.

Note:

- 1. Minimum of EIGHT experiments must be carried out.
- 2. Experiments may be added as and when required with the approval of BoS.

- 1. Electronic communication Sanjeev gupta
- 2. Electronic communication- Roody & coolen
- 3. principles of communication system- taub & schilling
- 4. Fibre optic communication G.kisser
- 5. Basic digital & analog communication systems B PLathi
- 6. Basic television Bernold Grob

DSC 8: Instrumentation and Microcontrollers

Course Title: Instrumentation and Microcontrollers	Course code: 21BSC6C8ELL
Total Contact Hours: 60	Course Credits: 04
Internal Assessment Marks: 40 marks	Duration of SEE: 02 hours
Semester End Examination Marks: 60 marks	

Course Outcomes (CO's): After the successful completion of the course, the student will be able to:

- Describe the different sensors and their use-case in real time integrating on different circuits.
- Explore the knowledge of data Filtering, Amplification and its applications.
- Understanding the Assembly level programming with 8051 and performing the different programs and observe the outputs.
- Able to interface the various devices to 8051 microcontroller and study the impact and applications of the same by writing the programs.

DSC 8: Instrumentation and Microcontrollers

Unit	Description	Hours
1	Module 1: Instrumentation-Sensors and applications Resistance type temperature sensors- metallic resistance thermometer, semiconductor resistance thermometer (thermistors), thermocouples, solid state sensors, quartz thermometers. Radiation type sensors - optical pyrometers. Displacement and strain transducers: LVDT, strain gauge-type of strain gauges, material for strain gauge. Pressure transducer: elastic transducer, bourdon or helical tubes, piezoelectric pressure transducer.	12
2	Module 2: Signal Conditioners Filters- integrators, differentiators and active filters- low pass, high pass, band pass, band rejection filters Precision rectifier using opamp, peak detectors, sample and hold circuits, phase sensitive detector, instrumentation amplifier, isolation amplifier, lock in amplifier.	12
3	Module 3: 8051 Microcontroller Microcontroller and embedded processors, overview of 8051 family, 8051 architecture, registers and memories in 8051, register banks, flag bits, PSW register, data types, JUMP, LOOP and CALL instructions.	12
4	Module 4: 8051 Addressing modes and Instruction set I/O programming of 8051- I/O programming, bit manipulation, addressing modes, arithmetic, logical and single bit instructions and programming.	12

5	Module 5: 8051 Timer/Counter Programming and Interfacing	
	8051 Timer/Counter programming, TCON register, Baud rate and Interrupts in	
	8051, stepper motor description and stepper motor interfacing via ULN2003,	
	interfacing of ADC and DAC to 8051.	

- 1. Transducers and instrumentation- DVS Murthy
- 2. The 8051 Microcontroller and embedded systems- Ali Mazidi and Janice Mazidi
- 8051 microcontroller architecture, programming and applications KJ Ayala
 Microcontrollers (Theory and applications) Ajay V Deshmukh

DSC 8: Instrumentation and Microcontroller Lab

Course Title: Instrumentation and Microcontroller Lab	Course code: 21BSC6C8ELP
Total Contact Hours: 56	Course Credits: 02
Internal Assessment Marks: 25 marks	Duration of SEE: 03 hours
Semester End Examination Marks: 25 marks	

Course Outcomes (CO's): After the successful completion of the course, the student will be able to:

- Observe circuit connections and their Behavior with programming.
- Study of various programs and their hands-on response.
- Study of various interfacing devices with 8051 and their response.
- Study of different IC's, sensors, filters, and amplifiers.

Lab experiments:

- 1's and 2's Complements of 8-bit numbers using 8051 microcontrollers.
- 2. Addition and Subtraction of two 8-bit numbers using 8051 microcontrollers.
- 3. Addition of two 16-bit numbers using 8051 microcontrollers.
- 4. Larger among two hexadecimal numbers using 8051 microcontrollers.
- 5. Smaller among two hexadecimal numbers using 8051 microcontrollers.
- 6. Seven segment LED Interfacing with Intel 8051 microcontroller through PPI.
- 7. Relay Interfacing with Intel 8051 microcontroller through PPI.
- 8. Stepper motor interfacing with 8051 microcontrollers through PPI.
- 9. Precision Full-wave Rectifier using OP-Amp.
- 10. Temperature Transducer and its response curve.

- 1. Transducers and instrumentation- DVS Murthy
- 2. The 8051 Microcontroller and embedded systems- Ali Mazidi and Janice Mazidi
- 3. 8051 microcontroller architecture, programming and applications KJ Ayala
- 4. Microcontrollers (Theory and applications) Ajay V Deshmukh