21PHY3E1AL

No. of Printed Pages: 1

Sl. No.

M.Sc. III Semester Degree Examination, April/May - 2024 **PHYSICS**

Advanced Condensed Matter Physics (NEP)

Time: 3 Hours Maximum Marks: 70

Note: Answer any five of the following questions with Question No. 1 (Q.1) is Compulsory,

	each question carries equal marks.			
1.	(a) (b)	Obtain Bragg's law in reciprocal space and discuss Brillouin zones of BCC lattice. Based on tight binding approximation arrive at the expression for band width in case of BCC.	9 5	
2.	(a) (b)	Obtain Boltzmann transport equation. What is magnetoresistance ? Explain.	9 5	
3.	(a) (b)	Arrive at the expression for internal field based on Lorentz in case of one dimensional array of dipoles in dielectrics. What is polarization? Explain different polarization mechanisms in dielectrics.	9 5	
4.	(a) (b)	Discuss the quantum theory of paramagnetism. What is hysteresis? Explain ferromagnetic hysteresis curve.	8 6	
5.	(a) (b)	Obtain London's equations of superconductivity. Explain flux quantization in a superconducting ring.	9 5	
6.	(a) (b)	Discuss the Sommerfeld's theory of electrical conductivity. Arrive at Clausius-Mosotti relation. Mention its significance.	8 6	
7.	(a) (b)	Discuss the molecular field theory of ferromagnetism. Outline the BCS theory of superconductivity.	8 6	
8.	(a) (b) (c)	State and explain Weidemann-Franz law. Explain the Classical theory of electronic polarization and optical absorption. Write a short note on macroscopic quantum interference.	5 5 4	

