No. of Printed Pages : 2

21MAT1C1L

Sl. No.

M.Sc. I Semester Degree Examination, April/May - 2024 MATHEMATICS

DSC - 1 : Algebra

(NEP)

Tim	e : 3	Hours Maximum Marks	3:70
Not		nswer any five of the following questions with question No. 1 is Compulsory . Each uestion carries equal marks.	
1.	(a)	Let H be a normal subgroup of group G and ϕ : G \rightarrow G/H is a mapping by $\phi(a) = Ha \forall G$. Then show that ϕ is epimorphism with Ker $\phi = H$.	4
	(b)	Show that centre of group G is characteristic subgroup of G.	4
	(C)	State and prove Born-Side Lemma.	6
2.	(a)	State and prove Sylow's 2 nd Theorem.	5
	(b)	Prove that every abelian group is always solvable.	4
	(c)	Show that no group of order 30 is simple.	5
3.	(a)	Prove that A non-zero commutative ring with unity is a field if it has no proper ideal.	4
	(b)	Let $R[x]$ be the polynomial ring over R then prove that :	6
		(i) R has identity if and only if $R[x]$ has identity.	
		(ii) If R is an integral domain if and only if $R[x]$ is an integral domain.	
	(c)	Show that any field F is an Euclidean Domain. Discuss the converse.	4
4.	(a)	Find the gcd of $x^4 + x^3 + 2x^2 + x + 1$, $x^3 - 1$.	3
	(b)	If $f(x) \in z[x]$ is primitive and $f(x)$ is irreducible over z, then prove that F is irreducible over Q.	6
	(c)	Show that $R[x]$ is a unique Factorization Domain then R be an integral Domain with unity is a unique Factorization Domain.	5
			P.T.O.

21MAT1C1L

- **5.** (a) Show that if $F \subseteq K$, then $\alpha \in K$ is algebraic over F if and only if $F(\alpha)$ is a finite **5** extension of F.
 - (b) Show that Prime subfield of a field is isomorphic to either Q or Z_p for some **5** prime.
 - (c) Find $\left[Q\left(\sqrt{2} + \sqrt{3}\right); Q\right]$ and find a basis for **4**

 $Q(\sqrt{2} + \sqrt{3}; Q) = \left[Q(\sqrt{2}; \sqrt{3}); Q\right].$

- **6.** (a) Show that Q_8 is a solvable group.
 - (b) Prove that every finite group having atleast two elements has a composite 5 series.

4

- (c) Prove that characteristic of an integral domain R is either zero or prime. **5**
- 7. (a) Verify the primitiveness of $f(x) = 4x^3 + 6x + 2$ in $z_n(x)$.
 - (b) If L is a finite extension of K and K is a finite extension of F then prove that 6 L is a finite extension of F.
 - (c) Show that $x^4 + 3x^3 9x^2 + 18x 12$ is irreducible over Q. 4
- 8. (a) Show that A₄ has no subgroups of order 6.
 (b) State and prove the Einstein criterion of irreducibility over UFD.
 5
 - (c) Show the splitting field of $x^4 + 1$ over $(\sqrt{2}, i)$ whose degree over Q is 4. **4**

- 0 0 0 -

###