No. of Printed Pages : 3

21MAT3E2AL

Sl. No.

M.Sc. III Semester Degree Examination, April/May - 2024 MATHEMATICS

Computational Techniques

(NEP)

Time : 3 Hours

Maximum Marks: 70

Note : Answer **any five** of the following questions with Question No. **1 (Q.1)** is **Compulsory**. Each question carries **equal** marks.

- **1.** (a) With the usual notation derive the Newton-cotes formula and hence derive **5** Simpsons one third formula.
 - (b) A tank is discharging water through on orifice at a depth of 'x' metres below the surface of the water whose area is 'Am²'. The following are the table of 'x' for corresponding value of 'A'.

A	1.257	1.39	1.52	1.65	1.809	1.962	2.123	2.295	2.462	2.65	2.827
x	1.50	1.69	1.80	1.95	2.10	2.25	2.40	2.55	2.70	2.85	3.00

Using the formula (0.018) T = $\int_{1.5}^{3} \frac{A}{\sqrt{x}} dx$,

Calculate T' the time in seconds for the level of the water to drop 3.0 m to 1.5 m above the orifice.

- (c) Evaluate the approximate value of the integral $\int_2^4 \frac{e^x}{\sin x + x} dx$ by using. 4
 - (i) Gauss-Chebyshev three point formula
 - (ii) Gauss-Legendre three point formula
- 2. (a) Define initial value problem. Discuss the Taylor series method to find the 7 numerical solution of the ODE $\frac{dy}{dx} = f(x, y); y(x_0) = y_0.$
 - (b) Using Modified Euler's method. Compute y(0.2) from $\frac{dy}{dx} = x + y$; y(1) = 2 taking step size h = 0.1. Compare the results obtained by this method with the results obtained by analytical method.

P.T.O.

21MAT3E2AL

3. (a) Discuss the Milne's Predictor-Corrector method to find the numerical solution **10** of the differential equation.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y); \ y(x_0) = y_0$$

- (b) Using Galerkin Method solve the following BVP described by the differential equation u" + u + x = 0, 0 < x < 1 subjected to the boundary conditions u(0) = u(1) = 0.
- **4.** (a) Solve the Elliptic equation $u_{xx} + u_{yy} = 0$ for the square mesh of the figure with boundary value as shown. **7**

- (b) Solve the PDE $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ subjected to the boundary condition. 7 $u(x, 0) = \sin \pi x, 0 \le x \le 1; u(0, t) = u(1, t) = 0.$ Carry out computation's for two levels, taking $h = \frac{1}{3}$ and $k = \frac{1}{36}$.
- 5. (a) Fit the least square for the curve $y=ax^3$ with the following data and hence estimate 'y' at x=6

x	1	2	3	4	5
y	0.5	2	4.5	8	12.5

- (b) Explain the non-linear regression with an example.
- 6. Using Euler's method. Find the value of y(0.1), y(0.2) and y(0.3) for 14 $\frac{dy}{dx} = xy + y^2; \ y(0) = 1.$

Hence find the value of y(0.3) by using Adams-Bashforth-Moulton method.

7

21MAT3E2AL

4

7.	(a)	Explain the Liebmann's iteration process for solving Laplace equation.	7
	(b)	Fit the normal equations and hence find the best fit value of x , y and z in the Least square sence from the following equations.	7
		x + 2y + z = 1;	
		2x+y+z=4;	
		-x+y+2z=4;	
		4x + 2y - 5z = -7.	
8.	(a)	Explain the stability of Runge-Kutta method.	5

- (b) Explain the shooting technique for numerical solution of the BVP for ordinary 5 differential equation.
- (c) Discuss the classification of Partial differential equation.

- o 0 o -

3