No. of Printed Pages : 2

21MAT3G1CL

Sl. No.

M.Sc. III Semester Degree Examination, April/May - 2024

MATHEMATICS

GEC-Graph Theory

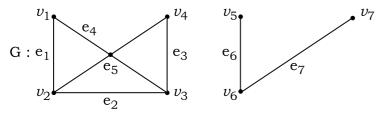
(NEP)

Time : 1 Hour

Note : Answer **all** the questions.

Maximum Marks : 30

SECTION - A

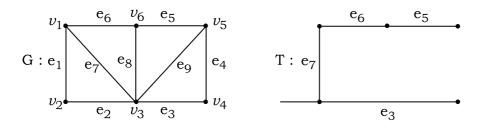

Answer all the following questions, each question carries one mark. 5x1=5

- **1.** (a) Define a path and give an example.
 - (b) Find all spanning subgraph of K_3 .
 - (c) Give an example of Eulerian cycle.
 - (d) Define Hamiltonian graph with an example.
 - (e) How many vertices are in a tree with 26 edges ?

SECTION - B

Answer **any five** of the following questions, each question carries **two** marks. **2x5=10**

- **2.** Show that in any graph G, the number of vertices of odd degree is even.
- **3.** Prove that every connected graph contains a spanning tree.
- **4.** Prove that a graph G with P vertices and $\delta \ge \frac{P-1}{2}$ is connected.
- 5. Give an example of a graph which is Hamiltonian but not Eulerian.
- **6.** Find the incidence matrix of the following disconnected graph.


- 7. Draw all complete bipartite trees with $4 \le P \le 6$ vertices.
- **8.** If G is a tree and if any two nonadjacent vertices of G are joined by an edge e, then show that G+e has exactly one cycle.

SECTION - C

Answer **any three** of the following questions, each question carries **five** marks. **3x5=15**

- **9.** Define centroids. Prove that every tree has a centre consisting of either one vertex or two adjacent vertices.
- **10.** Write all fundamental cycles of connected graph G with respect to a spanning tree T as shown in fig.

- **11.** A connected graph G is Eulerian if and only if the set of edges of G can be partitioned into cycles.
- 12. State and prove Kruskal's Algorithm.
- **13.** Write a short note on shortest-path problems.

- o O o -

##