No. of Printed Pages : 2

21MAT3E1BL

Sl. No.

M.Sc. III Semester Degree Examination, April/May - 2024

MATHEMATICS

Matrix Computations

(NEP)

Time : 3 HoursMaximum Marks : 70					
Note :		Answer any five questions with Q.No. 1 Compulsory. Each question carry 14 marks.			
1.	(a)	Compute the four fundamental subspaces associated with the matrix $A = \begin{bmatrix} 2 & 10 \\ 3 & 15 \end{bmatrix}$ 5+5+4=14			
	(b)	 (i) Let A,B∈ R^{m×n}. Then prove the following : Rank of A+B ≤(rank of A) + (rank of B) (iii) If A i = A B i			
	(c)	(11) If A is m by r and B is r by n both with rank r-then AB also has rank r. Let $A \in \mathbb{R}^{m \times n}$. Discuss the relationship between the row space and null space of A.			
2.	(a)	Express $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ 8 & 7 & 8 \end{bmatrix} = l_1 u_1^{\mathrm{T}} + l_2 u_2^{\mathrm{T}} + l_3 u_3^{\mathrm{T}}$. 6+8=14			
	(b)	Describe the singular value decomposition for $\begin{bmatrix} 3 & 0 \\ 4 & 5 \end{bmatrix}$			
3.	(a) (b)	State and prove Eckart-Young theorem. $7+7=14$ Prove that $A \in \mathbb{R}^{m \times n}$ has SVD.			
4.	(a) (b)	Write a detailed note on least- squares in four ways involving the data analysis. Use Arnoldi's iteration to compute Hessenberg matrices and illustrate with one example. 7+7=14			
5.	(a)	Let $A \in \mathbb{R}^{n \times n}$ be invertible matrix. Define the derivative of A^{-1} and also derive the expression : $\frac{d}{dt}(A^{-1}) = -A^{-1}\frac{d}{dt}(A)A^{-1}$.			
	(b)	Derive the expression for the largest eigenvalue of $S+T$, where S and T are same size of symmetric matrices.			
	(c)	Obtain the relation between discrete Fourier transform matrix and the Fourier matrix.			

P.T.O.

21MAT3E1BL

- 6. (a) Define the Raylight quotient. Use it to find the dominant singular value and hence singular vector.
 5+5+4=14
 - (b) Use the Concept of Kronecker sum to derive the eigenvalue of Laplacian.
 - (c) Define vectorization of a matrix and hence prove the following : $Vec(ABC) = (C^T \otimes A).vec(B)$, where A, B and C are Compatible matrices.
- 7. (a) Compute and interpret the Fourier coefficients for $(0, 1, 0, 0)^{T}$. 5+5+4=14
 - (b) Derive the expression for a relation between singular values and eigen values of a square matrix.
 - (c) Write a note on Householder reflections.
- 8. (a) Let S be a real symmetric matrix. Then prove the following are equivalent :
 - (i) S is positive definite
 - (ii) All the eigen values of S are positive
 - (b) Define Kronecker product of matrices. Use this definition to prove the following :

5+5+4=14

- (i) $I_2 \otimes I_3 = I_6$
- (ii) $(A \otimes B).(C \otimes D) = AC \otimes BD$

		[1	1	0]	
(c)	Obtain the QR factorization for	0	0	1	
		0	1	1	
		$\lfloor -1 \rfloor$	0	1	

- 0 0 0 -

2