No. of Printed Pages : 2

21MAT3C12L

Sl. No.

M.Sc. III Semester Degree Examination, April/May - 2024 MATHEMATICS

DSC 12 : Partial Differential Equations

(NEP)

Time : 3 Hours

Maximum Marks: 70

Note : Answer any five of the following questions with question No. 1 (Q.1) is Compulsory. All question carries equal marks.

- (a) Derive the steps involved for the solution of Lagrange's Linear Partial 7 differential equation of order one.
 - (b) Form a PDE by eliminating arbitrary constants/functions for the following : **7**
 - (i) $x+y+z=f(x^2+y^2+z^2)$
 - (ii) $(x-h)^2 + (y-k)^2 + z^2 = \lambda^2$
- **2.** (a) Find the family orthogonal to $\phi [z(x+y)^2, x^2-y^2] = 0$ **4**
 - (b) Show that the equations xp = yq; z(xp + yq) = 2xy are compatable and solve **6** them.
 - (c) Solve : $p + 3q = 5z + \tan(y 3x)$

3. (a) Use separation of variable method to solve $\frac{\partial^2 z}{\partial x^2} = a^2 z$ given that $\frac{\partial z}{\partial y} = 0$ **5**

At
$$x=0$$
 and $\frac{\partial z}{\partial x} = a \sin y$ at $x=0$

- (b) Obtain a solution of Heat equation by the separation of variables. **5**
- (c) Solve : $2D^2 5DD' + 2(D')^2 = 24(2y x)$
- 4. (a) Derive a solution of Laplace equation in cylindrical co-ordinates.
 7
 (b) Derive the solution of diffusion equation in spherical co-ordinates.
 7
- 5. (a) Describe Monge's Method of solution of non-linear PDE Rr + Ss + Tt = V. (b) Solve $t-r \sec^4 y = 2q \tan y$ by Monge's method. 10

P.T.O.

4

4

21MAT3C12L

6. (a) Solve
$$x^2 \frac{\partial^2 z}{\partial x^2} - y^2 \frac{\partial^2 z}{\partial y^2} - y \frac{\partial z}{\partial y} + x \frac{\partial z}{\partial x} = 0$$
 4

(b) Reduce
$$\frac{\partial^2 z}{\partial x^2} + 2 \frac{\partial^2 z}{\partial x \partial y} + x \frac{\partial z}{\partial x} = 0$$
 to its canonical form. 5

(c) Transform PDE into canonical form
$$3u_{xx} + 10u_{xy} + 3u_{yy} = 0$$
 5

7. (a) Use the Laplace transform method to solve Initial boundary value problem 7 described as PDE

$$u_{xx} - \frac{1}{C^2} u_{tt} - \cos wt = 0; \ 0 \le x < \infty$$

Boundary conditions u(0, t) = 0 initial conditions

$$u_t(x, 0) = u(x, 0) = 0$$

(b) Solve free vibration of a semi-infinite strings problem with the aid of Fourier 7 Transform

$$\frac{\partial^2 u}{\partial t^2} = \alpha^2 \ \frac{\partial^2 u}{\partial x^2}; \ 0 < x < \infty, \ t > 0.$$

IC's :
$$u(x; 0) = f(x)$$
 and $\frac{\partial u}{\partial x}(x, 0) = g(x)$

- 8. (a) Solve the following IBVP using Laplace transform Technique : $u_t = u_{xx}$; 0 < x < 1, t > 0BC's; u(0, t) = 1, u(1, t) = 1 t > 0IC's : $u(x, 0) = 1 + \sin \pi x$, 0 < x < 1
 - (b) Solve : $(D^2 + DD' + D' - 1)z = sin(x+2y)$
 - (c) Discuss the eigen function method to solve Partial Differential equation. **4**

5

- 0 0 0 -

2