DSC 7: Television and Digital Communication System

Course Title: Television and Digital Communication System	Course code: 21BSC6C13ELL
Total Contact Hours: 60	Course Credits: 04
Internal Assessment Marks: 40 marks	Duration of SEE: 02 hours
Semester End Examination Marks: 60 marks	

Course Outcomes (CO's): After the successful completion of the course, the student will be able to:

- Describe the basic principles transmission and reception of monochrome and color TV and its various circuitary.
- Explore the knowledge of satellite and mobile communication and its applications.
- Advancement in the communication systems like digital signal processing and transmission techniques.
- Will understand basic principles of optical communication systems and applications.

DSC 7: Television and Digital Communication System

Unit	t Description	
1	Module 1: Basic television principles Introduction, Elements of TV broad casting system, block diagram and function of monochrome TV transmitter & receiver, Scanning- aspect ratio, progressive, horizontal, vertical, & interlaced scanning, composite video signal, blanking and synchronizing pulses, channel band width, CCIR –B TV channels allotment of frequencies, Camera tubes-introduction, types, construction, working and characteristics of vidicon and image orthicon camera tubes.	
2	2 Module 2: Colour television Introduction, essentials of CTV, mixing of colours, additive &subtractive mixing, colour TV signals, luminance and chrominance signals, colour TV camera, colour sub carrier frequency, PAL colour TV system, PAL encoder & decoder, colour picture tube, block diagram & function of colour TV receiver	
3	3 Module 3: Satellite communication Introduction, kepler's laws, (statements only) satellite orbits, circular, elliptical & geosynchronous satellite orbits, satellite links, the uplink & downlink, the transponder, path loss, multiple access methods- Qualitative study of FDMA, TDMA, CDMA, cellular/mobile communication, requirements, PCS system, computer network,- LAN&WAN, internet & its services.	
4	4 Module 4: Digital communication Introduction & basic digital communication, pulse modulation systems, PAM, PTM, PWM &PPM, Synchronous and Asynchronous transmission, probability of bit error, matched filter, Pulse code modulation systems, block diagram &working	

	of PCM system, delta modulation, digital carrier systems, Block diagram &function of ASK, FSK, PSK, QPSK &DPSK	
5	Module 5: Optic fibers & communication Introduction, block diagram & function of optical communication system, advantages of optical communication, optical fiber & cable, types of optical fibers, modes of propagation, step index & graded index fiber, single and multimode fibers, propagation of light within a fiber Launching angle expression for numerical aperture(NA), fiber materials.	12

- 1. Electronic communication Sanjeev gupta
- 2. Electronic communication- Roody & coolen
- 3. principles of communication system- taub & schilling
- 4. Fibre optic communication G.kisser
- 5. Basic digital & analog communication systems B PLathi
- 6. Basic television Bernold Grob

DSC 7: Television and Digital Communication System Lab

Course Title: Television and Digital Communication System Lab	Course code: 21BSC6C14 ELP
Total Contact Hours: 56	Course Credits: 02
Internal Assessment Marks: 25 marks	Duration of SEE: 03 hours
Semester End Examination Marks: 25 marks	

Course Outcomes (CO's): After the successful completion of the course, the student will be able to:

- Observe circuit connections and their Behaviour.
- Study of various pulse modulation techniques and their hands-on response.
- Study of various Temperature Transducer and their response.
- Study of various TV circuits and digital communications

Lab experiments:

- 1. Photo transistor characteristics.
- 2. Study of different optical fibers
- 3. Demonstration of TV transmitters using ICT
- 4. Four-bit binary adder using IC7483
- 5. Study of PAM,
- 6. Study of PWM.
- 7. Study of PPM.,
- 8. Study of ASK
- 9. Study of FSK,
- 10. Study of PSK.

Note:

- 1. Minimum of EIGHT experiments must be carried out.
- 2. Experiments may be added as and when required with the approval of BoS.

- 1. Electronic communication Sanjeev gupta
- 2. Electronic communication- Roody & coolen
- 3. principles of communication system- taub & schilling
- 4. Fibre optic communication G.kisser
- 5. Basic digital & analog communication systems B PLathi
- 6. Basic television Bernold Grob

DSC 8: Instrumentation and Microcontrollers

Course Title: Instrumentation and Microcontrollers	Course code: 21BSC6C15ELL
Total Contact Hours: 60	Course Credits: 04
Internal Assessment Marks: 40 marks	Duration of SEE: 02 hours
Semester End Examination Marks: 60 marks	

Course Outcomes (CO's): After the successful completion of the course, the student will be able to:

- Describe the different sensors and their use-case in real time integrating on different circuits.
- Explore the knowledge of data Filtering, Amplification and its applications.
- Understanding the Assembly level programming with 8051 and performing the different programs and observe the outputs.
- Able to interface the various devices to 8051 microcontroller and study the impact and applications of the same by writing the programs.

DSC 8: Instrumentation and Microcontrollers

Unit	nit Description	
1	1 Module 1: Instrumentation-Sensors and applications Resistance type temperature sensors- metallic resistance thermometer, semiconduct resistance thermometer (thermistors), thermocouples, solid state sensors, qua thermometers. Radiation type sensors - optical pyrometers. Displacement and stra transducers: LVDT, strain gauge-type of strain gauges, material for strain gauge Pressure transducer: elastic transducer, bourdon or helical tubes, piezoelectric pressu transducer.	
2	2 Module 2: Signal Conditioners Filters- integrators, differentiators and active filters- low pass, high pass, band pass, band rejection filters Precision rectifier using opamp, peak detectors, sample and hold circuits, phase sensitive detector, instrumentation amplifier, isolation amplifier, lock in amplifier.	
3	3 Module 3: 8051 Microcontroller Microcontroller and embedded processors, overview of 8051 family, 8051 architecture, registers and memories in 8051, register banks, flag bits, PSW register, data types, JUMP, LOOP and CALL instructions.	
4	Module 4: 8051 Addressing modes and Instruction set I/O programming of 8051- I/O programming, bit manipulation, addressing modes, arithmetic, logical and single bit instructions and programming.	12

5	5 Module 5: 8051 Timer/Counter Programming and Interfacing	
	8051 Timer/Counter programming, TCON register, Baud rate and Interrupts in	
	8051, stepper motor description and stepper motor interfacing via ULN2003,	
	interfacing of ADC and DAC to 8051.	

- 1. Transducers and instrumentation- DVS Murthy
- The 8051 Microcontroller and embedded systems- Ali Mazidi and Janice Mazidi
 8051 microcontroller architecture, programming and applications KJ Ayala
 Microcontrollers (Theory and applications) Ajay V Deshmukh

DSC 8: Instrumentation and Microcontroller Lab

Course Title: Instrumentation and Microcontroller Lab	Course code: 21BSC6C16ELP
Total Contact Hours: 56	Course Credits: 02
Internal Assessment Marks: 25 marks	Duration of SEE: 03 hours
Semester End Examination Marks: 25 marks	

Course Outcomes (CO's): After the successful completion of the course, the student will be able to:

- Observe circuit connections and their Behavior with programming.
- Study of various programs and their hands-on response.
- Study of various interfacing devices with 8051 and their response.
- Study of different IC's, sensors, filters, and amplifiers.

Lab experiments:

- 1's and 2's Complements of 8-bit numbers using 8051 microcontrollers.
- 2. Addition and Subtraction of two 8-bit numbers using 8051 microcontrollers.
- 3. Addition of two 16-bit numbers using 8051 microcontrollers.
- 4. Larger among two hexadecimal numbers using 8051 microcontrollers.
- 5. Smaller among two hexadecimal numbers using 8051 microcontrollers.
- 6. Seven segment LED Interfacing with Intel 8051 microcontroller through PPI.
- 7. Relay Interfacing with Intel 8051 microcontroller through PPI.
- 8. Stepper motor interfacing with 8051 microcontrollers through PPI.
- 9. Precision Full-wave Rectifier using OP-Amp.
- 10. Temperature Transducer and its response curve.

- 1. Transducers and instrumentation- DVS Murthy
- 2. The 8051 Microcontroller and embedded systems- Ali Mazidi and Janice Mazidi
- 3. 8051 microcontroller architecture, programming and applications KJ Ayala
- 4. Microcontrollers (Theory and applications) Ajay V Deshmukh