No. of Printed Pages : 2

21BSC1C1MTL(46126)

B.Sc. I Semester Degree Examination, April/May - 2024 MATHEMATICS

DSC-1 : Fundamentals of Algebra and Calculus

(NEP)

Time : 2 Hours

Maximum Marks: 60

Note : Answer all the Sections.

- Note: (i) Answer all the questions from Section A.
 - (ii) Answer **any four** questions from **Section B**.
 - (iii) Answer any three questions from Section C.

SECTION - A

- 1. Answer the following sub-questions. Each sub-question carries **one** mark. **10x1=10**
 - (a) Define symmetric matrix.
 - (b) Define rank of the matrix.
 - (c) Define consistency and inconsistency of a system of linear equation.
 - (d) Find the value of λ which the system has non-trivial solution 7x+4y+3z=0, $x+2y+\lambda z=0$ and x+3y+2z=0.
 - (e) Define pedal equation of a polar curve.
 - (f) Write the formula for angle between radius vector and tangent.
 - (g) Evaluate : $\lim_{x \to 0} \frac{1 \cos x}{x \log(1+x)}$
 - (h) State Cauchy's mean value theorem.
 - (i) Find the 5th derivative of $y = e^{2x}$.
 - (j) State Leibnitz theorem for the n^{th} derivative of a product.

SECTION - B

Answer **any four** of the following questions carries **five** marks each.

- **2.** Using Cayley-Hamilton's theorem find A^{-1} if $A = \begin{bmatrix} 3 & 1 \\ -1 & -2 \end{bmatrix}$.
- **3.** Find the Eigen value and Eigen vector of matrix $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$.
- **4.** Show that the curve $r = a^n \cos \theta$ and $r = b^n \sin \theta$ intersect orthogonally.

4x5=20

21BSC1C1MTL(46126)

- **5.** Evaluate : $\lim_{x \to 1} \left[\frac{x}{x-1} \frac{1}{\log x} \right]$.
- **6.** Verify Roll's theorem for the function $f(x) = x^2 4x + 8$ in the interval [1, 3].
- 7. Find the nth derivative of $y = e^{ax} \sin(ax+b)$.

SECTION - C

Answer any three of the following questions, each question carries

ten marks. 3x10=30 Find the rank of the matrix by reducing into normal form. 8. (a) 6 $\mathbf{A} = \begin{vmatrix} 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & 2 & 0 \end{vmatrix}$ If 'A' is a symmetric matrix then show that KA is also symmetric matrix. 4 (b) 9. (a) Test for consistency and solve 5 x+y+z=6x-y+2z=53x+y+z=8Find the non-trivial solution of the system (b) 5 x+3y-2z=02x - y + 4z = 0x - 11y + 14z = 0Find the Pedal Equation for $r^n = a^n \cos \theta$. **10.** (a) 5

- (b) Derive the formula for Radius of curvature $\int = \frac{(1+y_1^2)^{3/2}}{y_2}$. 5
- 11. (a) Expand e^{sinx} using Maclaurin's theorem upto the term containing x⁴.
 (b) Verify the Cauchy's mean value theorem f(x) = x²+3, g(x) = x³+1 in [1, 3].
 5
- **12.** (a) If $y = a\cos(\log x) + b\sin(\log x)$ show that $x^2y_{n+2} + (2n+1)xy_{n+1} + (n^2+1)y_n = 0.$ (b) Find the nth derivative of sinx.sin2x.sin3x. **5**

##