No. of Printed Pages : 2

21BSC5C5MTL

B.Sc. V Semester Degree Examination, April/May - 2024 MATHEMATICS

DSC - 5 : Real Analysis - II and Complex Analysis

(NEP)

Time : 2 Hours Maximum Marks: 60 Answer **all** sections. Note : **SECTION - A** Answer the following sub-questions, each sub-question carries **one** mark. **10x1=10** 1. Define segment of the Partition. (a) (b) Define norm of the partition P. State first Mean Value theorem. (c) If $f(x) = \cos x$ find the primitive of f(x). (d) (e) What is Complex number ? (f) What is Agrand plane ? (g) Define transformation. Define Linear transformation. (h) If C is made up of C₁, C₂, C₃, then $\int_{C} f(z) dz =$ (i) (i) State Green's theorem. **SECTION - B** Answer any four of the following questions, each question carries five marks. 4x5=20 If x^2 is defined on [0, 1] and P={0, 1/6, 2/6, 3/6, 4/6, 5/6, 1} then find U(p, f) 2. and L(p, f).

- **3.** Evaluate $\int_{0}^{\frac{\pi}{4}} (\sec^4 x \tan^4 x) dx$ by fundamental theorem of integral calculus.
- **4.** Find whether function is differentiable sinz at *i*.
- 5. Prove that Bilinear transformation preserve the cross-ratio of four points.

P.T.O.

21BSC5C5MTL

6. Evaluate
$$\int_{C} (x^2 - iy^2) dz$$
 along $y = 2x^2$ from (1, 2) to (2, 8).

Using the substitution $x = \pi - t$ show that $\int_{0}^{\pi} x \varphi(\sin x) dx = \pi/2 \int_{0}^{\pi} \varphi(\sin x) dx$ 7.

SECTION - C

Answer any three of the following questions, each question carries ten marks. 3x10=30

- State and prove Necessary and Sufficient condition of Riemann integrability. 8. (a)
 - If f(x) is the function defined on [a, b] by $f(x) = \begin{cases} 1 & \text{if } x \text{ is rational} \\ -1 & \text{if } x \text{ is irrational} \end{cases}$ (b) then find the oscillation of f(x) in [a, b].
- By applying Mean Value Theorem to the integral $\int_{0}^{\frac{\pi}{4}} \sec x \, dx$. 9. (a)

Show that
$$\frac{\pi}{4} \leq \int_{0}^{\frac{\pi}{4}} \sec x \, dx \leq \frac{\pi}{2\sqrt{2}}$$

(b) Show that $\int_{0}^{2} x \cdot \cos x \, dx = \frac{\pi}{2} - 1$ By using integration by parts.

- 10. Show that $f(z) = \cosh z$ is analytic and hence find f'(z). (a)
 - (b) Show that $u = e^x \cos y + xy$ is harmonic and find its harmonic conjugate.
- Find the Bilinear transformation which maps $z_1 = -1$, $z_2 = 0$, $z_3 = 1$ into $w_1 = 0$, **11.** (a) $w_2 = i$, $w_3 = 3i$. Find the region in the w-plane bounded by the line x = 1, y = 1, x + y = 1 under
 - (b) the transformation $w = z^2$.
- If a function f(z) be analytic at all points within and on closed contour C **12.** (a) then $\int_{C} f(z) = 0$.
 - (b) Evaluate $\int_{C} \frac{1}{z(z-1)} dz$ where C is the circle |z|=3.

- 0 0 0 -

2